Active faults have special electromagnetic effect and remote sensing characteristics, and exhibit unique im-agery marks in satellite images. A comprehensive comparison of images of active faults in eastern China and a...Active faults have special electromagnetic effect and remote sensing characteristics, and exhibit unique im-agery marks in satellite images. A comprehensive comparison of images of active faults in eastern China and ananalysis of geologic and geomorphic data can tell us some characteristics of fault activity in the area during theneotectonic period: 1) The fault activities of the north-south tectonic zone, North China and Taiwan werestronger than those of southeastern and northeastern China; 2) the faulting in the north-south tectonic zone,North China and Taiwan has continued up to now, and most of the fault activites in southeastern andnorth-eastern China have become weaker since the Middle Pleistocene; 3) the activity is unsteady in time, mostbeing intermittent, or episodic, i.e. alternately strong and weak; 4) most active faults of a definite size can be di-vided into several segments which somewhat differ from each other in the characteristics of the activity.展开更多
In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the...In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the fault position,the closed-loop structure of the PSDN is skillfully exploited,and the common control strategies of IIDGs are considered.For asymmetrical faults,a fault line identification formula based on the negative-sequence current phase differences is presented,and a fault location formula only utilizing the negative-sequence current amplitudes is derived to calculated the fault position.For symmetrical faults,the positive-sequence current at both ends of lines and the current output from IIDGs are used to identify the fault line,and the positive-sequence current on multiple lines are used to pinpoint the fault position.In this method,corresponding current phasors are separated into amplitudes and phases to satisfy the limitation of communication level.The simulation results show that the error is generally less than 1%,and the accuracy of the proposed method is not affected by the fault type,fault position,fault resistance,load current,and the IIDG penetration.展开更多
The increase of renewable energy sources(RESs),especially wind power and photovoltaic,is bringing different fault features to the power system compared with the traditional syn-chronous generator,resulting in the urge...The increase of renewable energy sources(RESs),especially wind power and photovoltaic,is bringing different fault features to the power system compared with the traditional syn-chronous generator,resulting in the urgent need for precise fault analysis.According to the sequentially activated fault features,the short circuit characteristics of RES can be divided into three fault stages.Within the staged framework of fault duration,the published research is reviewed to provide a systematic analysis of RES fault characteristics.It's concluded that the hardware parameter determines the sub-transient fault features of RES,whereas RES control begins to dominate during the following transient stage.However,the neglection of voltage transition and unavailable RES output phase shall impede the application of the analytical conclusions in protection design.To solve the existing problems,interaction among RES and networks must be figured out.Therefore,the fault calculation of the integral RES-grid system is offered as the research prospect.展开更多
文摘Active faults have special electromagnetic effect and remote sensing characteristics, and exhibit unique im-agery marks in satellite images. A comprehensive comparison of images of active faults in eastern China and ananalysis of geologic and geomorphic data can tell us some characteristics of fault activity in the area during theneotectonic period: 1) The fault activities of the north-south tectonic zone, North China and Taiwan werestronger than those of southeastern and northeastern China; 2) the faulting in the north-south tectonic zone,North China and Taiwan has continued up to now, and most of the fault activites in southeastern andnorth-eastern China have become weaker since the Middle Pleistocene; 3) the activity is unsteady in time, mostbeing intermittent, or episodic, i.e. alternately strong and weak; 4) most active faults of a definite size can be di-vided into several segments which somewhat differ from each other in the characteristics of the activity.
基金supported by State Grid Science and Technology Project:Research on Key Protection Technologies for New-type Urban Distribution Network with Controllable Sources and Loads(5100-201913019A-0-0-00).
文摘In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the fault position,the closed-loop structure of the PSDN is skillfully exploited,and the common control strategies of IIDGs are considered.For asymmetrical faults,a fault line identification formula based on the negative-sequence current phase differences is presented,and a fault location formula only utilizing the negative-sequence current amplitudes is derived to calculated the fault position.For symmetrical faults,the positive-sequence current at both ends of lines and the current output from IIDGs are used to identify the fault line,and the positive-sequence current on multiple lines are used to pinpoint the fault position.In this method,corresponding current phasors are separated into amplitudes and phases to satisfy the limitation of communication level.The simulation results show that the error is generally less than 1%,and the accuracy of the proposed method is not affected by the fault type,fault position,fault resistance,load current,and the IIDG penetration.
基金supported by the National Natural Science Foundation of China under Grants 52061635102 and 51725702.
文摘The increase of renewable energy sources(RESs),especially wind power and photovoltaic,is bringing different fault features to the power system compared with the traditional syn-chronous generator,resulting in the urgent need for precise fault analysis.According to the sequentially activated fault features,the short circuit characteristics of RES can be divided into three fault stages.Within the staged framework of fault duration,the published research is reviewed to provide a systematic analysis of RES fault characteristics.It's concluded that the hardware parameter determines the sub-transient fault features of RES,whereas RES control begins to dominate during the following transient stage.However,the neglection of voltage transition and unavailable RES output phase shall impede the application of the analytical conclusions in protection design.To solve the existing problems,interaction among RES and networks must be figured out.Therefore,the fault calculation of the integral RES-grid system is offered as the research prospect.