Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin struct...Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin structure in the Pearl River Mouth Basin on the northern margin of the South China Sea.Three types of detachment faults of different structural levels exist:crust-mantle detachment,inter-crust detachment and upper crust detachment.It is considered that different types of extensional detachment control different subbasin structures.Many fault depressions controlled by upper crust detachment faults have been found in the Zhu I Depression located in the proximal zone.These detachment faults are usually reformed by magma emplacement or controlled by preexisting faults.Baiyun-Liwan Sag located in the hyperextension area shows different characteristics of internal structure.The Baiyun main sag with relative weak magmatism transformation is a wide-deep fault depression,which is controlled by crust-mantle detachment system.Extensive magmatism occurred in the eastern and southwest fault steps of the Baiyun Sag after Middle Eocene,and the crust ductile extensional deformation resulted in wide-shallow fault depression controlled by the upper crust detachment fault.Based on the classical lithosphere extensional breaking and basin tectonic evolution in the Atlantic margin,it is believed that the magmatic activities and pre-existing structures in the Mesozoic subduction continental margin background are important controlling factors for the diversified continental margin faulted structures in the northern South China Sea.展开更多
The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality...The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality differences and origins of different types of source rocks in the Shahezi Formation,this study reconstructed the sedimentary and water environment,determined the controlling effects of fault activity,sedimentary facies,and paleo-sedimentary environment on the quality of various source rocks,by making full use of seismic,logging,core,organic geochemical and element geochemical analysis.The results show that two types of source rocks developed in the Shahezi Formation,namely,mudstones and coals.The mudstones have a relatively high abundance of organic matter,which consists of type-Ⅱ kerogen and partial type-Ⅲ kerogen,and are concentrated in Sha-I Member.The coals have a high abundance of organic matter,which consist of type-Ⅲ kerogen,and are mainly distributed in Sha-Ⅱ Member.During the deposition of Sha-I Member,intense fault activity formed arrow,deep-water lacustrine basins with high salinity and strong reducibility on the downthrow sides of faults.During the deposition of Sha-II Member,fault activity progressively weakened,and the areas of lacustrine basins enlarged to their maximum values and became wide,shallow-water basins with low salinity and low reducibility.The development of source rocks was controlled by fault activity,sedimentary facies,and paleo-sedimentary environment.Fault activity formed accommodation space on the downthrown sides of faults for mudstone accumulation,thus determining mudstone thickness.The sedimentary environment controlled the organic matter input and determined the distribution of mudstones and coals.The paleo-sedimentary environment,which consisted of paleo-salinity,as well as paleo-water depth and redox conditions,affected the accumulation and preservation of organic matter and is the main controlling factor for the quality difference of various source rocks in the Shahezi Formation.展开更多
The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formatio...The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formation(K 1 yc).Based on seismic interpretation,drill cores and the results of previous research,we analyzed the distribution of faults and the thickness of volcanic rocks in different periods of K 1 yc,and studied the relationship of volcanic activities and main faults.Volcanic rocks were formed in the Yingcheng period when the magma erupted along pre-existing fault zones.The volcanic activities strongly eroded the faults during the eruption process,which resulted in the structural traces in the seismic section being diffuse and unclear.The tectonic activities weakened in the study area in the depression stage.The analysis of seismic interpretation,thin section microscopy and drill cores revealed that a large number of fractures generated in the volcanic rocks were affected by later continued weak tectonic activities,which greatly improved the physical properties of volcanic reservoirs,and made the volcanic rocks of K 1 yc be favorable natural gas reservoirs.The above conclusions provide the basis to better understand the relationship of the volcanic rock distribution and faults,the mechanism of volcanic eruption and the formation of natural gas reservoirs in volcanic rocks.展开更多
In order to investigate the migration and accumulation efficiency of hydrocarbon natural gas in the Xujiaweizi fault depression, and to provide new evidence for the classification of its genesis, a source rock pyrolys...In order to investigate the migration and accumulation efficiency of hydrocarbon natural gas in the Xujiaweizi fault depression, and to provide new evidence for the classification of its genesis, a source rock pyrolysis experiment in a closed system was designed and carried out. Based on this, kinetic models for describing gas generation from organic matter and carbon isotope fractionation during this process were established, calibrated and then extrapolated to geologic conditions by combining the thermal history data of the Xushen-1 Well. The results indicate that the coal measures in the Xujiaweizi fault depression are typical "high-efficiency gas sources", the natural gas generated from them has a high migration and accumulation efficiency, and consequently a large-scale natural gas accumulation occurred in the area. The highly/over matured coal measures in the Xujiaweizi fault depression generate coaliferous gas with a high δ^13C1 value (〉 -20‰) at the late stage, making the carbon isotope composition of organic alkane gases abnormally heavy. In addition, the mixing and dissipation through the caprock of natural gas can result in the negative carbon isotope sequence (δ^13C1 〉δ^13C2 〉δ^13C3 〉δ^13C4) of organic alkane gases, and the dissipation can also lead to the abnormally heavy carbon isotope composition of organic alkane gases. As for the discovery of inorganic nonhydrocarbon gas reservoirs, it can only serve as an accessorial evidence rather than a direct evidence that the hydrocarbon gas is inorganic. As a result, it needs stronger evidence to classify the hydrocarbon natural gas in the Xujiaweizi fault depression as inorganic gas.展开更多
The pollen and spores found in the Early Cretaceous strata of two cores from the Shuangliao Fault Depression were studied systematically, and two palynological assemblages have been recognized. Assemblage I from the Y...The pollen and spores found in the Early Cretaceous strata of two cores from the Shuangliao Fault Depression were studied systematically, and two palynological assemblages have been recognized. Assemblage I from the Yingcheng Formation is named Paleoconiferus-Pinuspollenites; the assemblage is characterized by an extremely high content of Paleoconifer pollen. Assemblage II from Member 1 of the Denglouku Formation is named Cicatricosisporites-Cyathidites-Pinuspollenites; the assemblage is characterized by the abundant presence of Laevigati spores, but less Paleoconifer pollen. According to the palynological data and zircon U-Pb dating, the geological age of the Yingcheng Formation is thought to be Aptian-Albian, and that of the Denglouku Formation is thought to be Early Albian. On the basis of the composition of each assemblage, we can infer that during the depositional period of the Yingcheng Formation, the paleovegetation was mainly conifer forest, the paleoclimate was consistent with the temperate climate of today, and the paleoenvironment was humid feature. During the depositional period of Member 1 of the Denglouku Formation, the paleovegetation was mainly conifer forest and shrubs, the paleoclimate was consistent with the subtropical climate of today, and the paleoenvironment was humid. The results significantly improve our understanding of the stratigraphy in the Shuangliao Fault Depression, provide biostratigraphic evidence for the division and correlation of Early Cretaceous strata in the Shuangliao Fault Depression, and provide new data for analyzing paleovegetation and paleoclimate in the Songliao Basin.展开更多
Through the analysis of core descriptions, well-logs, seismic data, geochemical data and structural settings of the volcanic rock of the Yingcheng Formation in the Xujiaweizi fault depression, Songliao Basin, and the ...Through the analysis of core descriptions, well-logs, seismic data, geochemical data and structural settings of the volcanic rock of the Yingcheng Formation in the Xujiaweizi fault depression, Songliao Basin, and the geological section of the Yingcheng Formation in the southeast uplift area, this work determined the existence of volcanic weathering crust exists in the study area. The identification marks on the volcanic weathering crust can be recognized on the scale of core, logging, seismic, geochemistry, etc. In the study area, the structure of this crust is divided into clay layer, leached zone, fracture zone and host rocks, which are 5-118 m thick (averaging 27.5 m). The lithology of the weathering crust includes basalt, andesite, rhyolite and volcanic breccia, and the lithofacies are igneous effusive and extrusive facies. The volcanic weathering crusts are clustered together in the Dashen zone and the middle of the Xuzhong zone, whereas in the Shengshen zone and other parts of the Xuzhong zone, they have a relatively scattered distribution. It is a major volcanic reservoir bed, which covers an area of 2104.16 km2. According to the geotectonic setting of the Songliao Basin, the formation process of the weathering crust is complete. Combining the macroscopic and microscopic features of the weathering crust of the Yingcheng Formation in Xujiaweizi with the logging and three-dimensional seismic sections, we established a developmental model of the paleo uplift and a developmental model of the slope belt that coexists with the sag on the Xujiaweizi volcanic weathering crust. In addition, the relationship between the volcanic weathering crust and the formation and distribution of the oil/gas reservoir is discussed.展开更多
Distribution characteristics,organic matter development characteristics,gas-bearing characteristics,reservoir characteristics,and preservation conditions of the Shahezi Formation shale of Lower Cretaceous in the Lishu...Distribution characteristics,organic matter development characteristics,gas-bearing characteristics,reservoir characteristics,and preservation conditions of the Shahezi Formation shale of Lower Cretaceous in the Lishu fault depression,Songliao Basin,NE China,are analyzed using organic geochemical,whole rock,and SEM analysis data,and CO_(2)and N_(2) adsorption and high-pressure mercury injection experiment data in combination with the tectonic and sedimentation evolution of the region to reveal the geological conditions for enrichment and resource potential of continental shale gas.The organic-rich shale in the Lower Cretaceous of the Lishu fault depression is mainly developed in the lower submember of the second member of the Shahezi Formation(K_(1)sh_(2)^(1) Fm.)and is thick and stable in distribution.The shale has high TOC,mainly types II_(1) and II_(2) organic matter,and is in the mature to the over-mature stage.The volcanic activity,salinization,and reduction of the water environment are conducive to the formation of the organic-rich shale.The shale reservoirs have mainly clay mineral intergranular pores,organic matter pores,carbonate mineral dissolution pores,and foliated microfractures as storage space.The pores are in the mesopore range of 10–50 nm,and the microfractures are mostly 5–10μm wide.Massive argillaceous rocks of lowland and highstand domains are deposited above and below the gas-bearing shale separately in the lower submember of the K_(1)sh_(2)^(1) Fm.,act as the natural roof and floor in the process of shale gas accumulation and preservation,and control the shale gas enrichment.Based on the above understandings,the first shale gas exploration well in Shahezi Formation was drilled in the Lishu fault depression of Songliao Basin.After fracturing,the well tested a daily gas production of 7.6×10^(4) m^(3),marking a breakthrough in continental shale gas exploration in the Shahezi Formation(K1 sh Fm.)of the Lishu fault depression in Songliao Basin.The exploration practice has reference significance for the exploration of continental shale gas in the Lower Cretaceous of Songliao Basin and its periphery.展开更多
The Bohai Bay Basin contains many depressions with varying degrees of hydrocarbon enrichment associated with the geological structures of different depressions. This study discussed the relationship between the geolog...The Bohai Bay Basin contains many depressions with varying degrees of hydrocarbon enrichment associated with the geological structures of different depressions. This study discussed the relationship between the geological structures and hydrocarbon enrichment of the depressions in the Bohai Bay Basin. Based on the Paleogene strata distribution and the length to width ratio of different depressions, their geological structures are divided into three types in plan-view: open(length/width 〈 2), narrow(length/width 〉 4) and transitional types(length/width 2-4). In cross section, the geological structures can be divided into dustpan I, dustpan II and double-faulted types. Based on tectonic evolution and sedimentary characteristics, the depressions are classified into early-formed, inherited and late-formed categories. Generally, narrow depressions are mainly located in the northeast and southwest of the Bohai Bay Basin, while open depressions are dominantly distributed in the central area of the basin; late-formed depressions are mainly around the Bohai sea area, and early-formed depressions are mostly located in the periphery of the basin. Geological structures of the depressions control the formation of the source, reservoir and cap rocks as well as hydrocarbon accumulation setting, and further influence the pay zones and oil-bearing sequence. In detail, dustpan II and doublefaulted depressions mainly have A-type sags, which often possess better hydrocarbon generation conditions than dustpan I ones; hydrocarbons in open dustpan II depressions tend to accumulate in the central uplift areas or buried hill, while those in narrow dustpan I depressions always accumulate in gentle slope belts. The oil-bearing sequence for different evolutional depressions corresponds well with the sedimentary strata of the main development stages of depressions. In early-formed depressions, hydrocarbons are mainly enriched in deeply buried reservoirs, while in late-formed depressions hydrocarbons are abundant in the relatively shallow traps. In summary, most inherited and late-formed dustpan II depressions are enriched in hydrocarbons due to their extensive source rocks and good source-reservoir-seal assemblages, whereas dustpan I and early-formed depressions are relatively poor in hydrocarbons.展开更多
This paper gives a study of 3 D crustal seismic velocity changes in the Weihe fault depression basin, in which the overlapping sphere iterative reconstruction method of tomographic image was used in connection with ...This paper gives a study of 3 D crustal seismic velocity changes in the Weihe fault depression basin, in which the overlapping sphere iterative reconstruction method of tomographic image was used in connection with the two point fast ray tracing technique. By means of theoretical modeling, the monitoring function of the observatory network system of Shaanxi Province was tested. Using the seismic data of the network, seismic tomographic inversion imaging of the crustal seismic velocity in the Weihe fault basin was studied. The results are as follows: In the Tongchuan Yaoxian area to the north of Jingyang, there is a high velocity region extending nearly in NS direction, the highest velocity value is around Tongchuan. To the southwest of Shangxian and Lantian, there is a low velocity zone about 100 km long and about 50 km wide, inside which there are two regions of the lowest velocity 50 km apart. The epicenters of historical strong earthquakes are mainly on the boundary of high velocity regions or in regions of fairly high velocity. In the eastern and western parts of the south margin of the Qinling Mountains, there is an obvious lateral nonhomogeneity of seismic velocity.展开更多
This paper makes a systematical study on characteristics of structure and motion of the tectonic blocks in northern part of the Shanxi fault depression zone by means of geometrical and kinematical analysis of the bloc...This paper makes a systematical study on characteristics of structure and motion of the tectonic blocks in northern part of the Shanxi fault depression zone by means of geometrical and kinematical analysis of the blocks. The ki-netic behavior of the blocks is discussed by comparing associated geomorphic features of fault movement. All analyses and studies are based on a Domino model. The block movement, fault basin extension and their regional distribution are systematically investigated. The result shows: (a) The studied region is divided into sub-regions by NW striking faults: the western, middle and eastern sub-region with crustal extension being 4.46 km, 2.80 km and 1.86 km, respectively. The extensional amount of each block in the region is estimated being generally about 1 km. The calculated result using the block motion model approximately fits the data of geologic survey. (b) Block kin-ematical features are obviously different between the northern and southern part, with the Hengshan block in be-tween, of the studied region. Moreover, the magnitude of the largest historical earthquake in the northern part is about 6, while that in the southern is 7. The faulted blocks in the northern sub-region show northwestward exten-sion, indicating a feature of extensional graben, while the blocks in the southern part manifest tilt motion, extend-ing southeastward, in the opposite sense of fault dipping. Additional tectonic stress generated by block rotation may be one of major factors affecting seismogenic process in the region. It is responsible for the difference in the movement of the block boundary faults and seismic activities between the two sub-regions.展开更多
Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng...Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng of Shandong Province and Luobei of Heilongjiang Province in China to the territory of Russia. Its formation is related to the subduction of Kula-Pacific plate to the Asian continent. It is oriented approximately parallel to the eastern edge of Asia. It is dominated by the sinistral translation from Jurassic to Eocene and then by dextrose strike-slip. It has the following characters: (1)clear linear character; (2)sharp dip angle, usually changing between normal and reverse faults; (3)showing braided structure on the plan and flower structure in section;(4)alternated by uplifts and sags along the fault belt; (5)many stages of the eruptions of alkaline to calc-alkaline basalt magma along the fault belt; and (6) frequent activities of earthquakes along the fault belt. Its control over the oil-gas distribution is shown by the following racts: (1) the formation of many oil-bearing fault depressions; (2) the increase of the basin area it has passed through, thus increasing the basin's subsiding quantity and the oil reservoirs; and (3)the formation of many kinds of oil-gas trap structures.展开更多
Through natural gas exploration in the Changling Fault Depression,abundant natural gas flows were obtained and high-quality source rocks were also reveiled.Based on bulk analyses,organic matter abundance,organic matte...Through natural gas exploration in the Changling Fault Depression,abundant natural gas flows were obtained and high-quality source rocks were also reveiled.Based on bulk analyses,organic matter abundance,organic matter type and thermal maturity of the source rocks were studied systematically.At the same time,gas gener-ating intensity and gas generating quantity were quantitatively analyzed by using basin modeling technologies.The results indicated that gas source rocks of the Shahezi Formation are characterized by abundant organic matter and dark mudstone distributions and high-over thermal maturity.They possess high gas generating intensity with the biggest value surpassing 500×108 m3/km2,and large gas generating quantity,accounting from 74.40% of the total amount.The Yingcheng Formation has good gas-source rocks with moderate dark mudstone and relatively high organic matter.It has type-Ⅲ organic matter and low-over thermal maturity.The gas generating intensity is moderate,between 20×108 and 60×108 m3/km2.The gas generating quantity is 13.63% of the total amount.The Huoshiling Formation has relatively good source rocks with limited dark mudstone and low organic matter.It has type-Ⅲ kerogen and over-thermal maturity.The gas generating quantity is 7.10% of the total amount.The Denglouku Formation has poor-gas source rocks,and is characterized by undeveloped dark mudstone and low organic matter abundance.It has type-Ⅲ organic matter and low-high thermal maturity.Hydrocarbon gases in the Changling Fault Depression mainly originated from the Shahezi Formation,and secondarily from the Yingcheng Formation.The contribution of the Huoshiling Formation gas source rocks is relatively small.展开更多
The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined q...The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined quantitatively by mathematical model. The tight gas charging and accumulation mechanisms were revealed from a combination of physical simulation of nuclear magnetic resonance coupling displacement, numerical simulation considering material and mechanical equilibria, as well as actual geological observation. The results show that gas migrates into tight rocks to preferentially form a gas saturation stabilization zone near the source-reservoir interface. When the gas source is insufficient, gas saturation reduction zone and uncharged zone are formed in sequence from the source-reservoir interface. The better the source rock conditions with more gas expulsion volume and higher overpressure, the thicker the gas saturation stabilization and reduction zones, and the higher the overall gas saturation. When the source rock conditions are limited, the better the tight reservoir conditions with higher porosity and permeability as well as larger pore throat, the thinner the gas saturation stabilization and reduction zones, but the gas saturation is high. The sweet spot of tight gas is developed in the high-quality reservoir near the source rock, which often corresponds to the gas saturation stabilization zone. The numerical simulation results by mathematical model agree well with the physical simulation results by nuclear magnetic resonance coupling displacement, and reasonably explain the gas-water distribution and production pattern of deep reservoirs in the Xujiaweizi fault depression of the Songliao Basin and tight gas reservoirs in the Linxing-Huangfu area of the Ordos Basin.展开更多
The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to reso...The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to resolve such weaknesses, this paper presents an improved tilt-depth method based on the magnetic anomaly expression of vertical contact with a finite depth extent, which can simultaneously estimate top and bottom depths of magnetic bodies. In addition, multiple characteristic points are selected on the tilt angle map for joint computation to improve reliability of inversion solutions. Two- and three- dimensional model tests show that this improved tilt-depth method is effective in inverting buried depths of top and bottom bodies, and has a higher inversion precision for top depths than the conventional method. The improved method is then used to process aeromagnetic data over the Changling Fault Depression in the Songliao Basin, and inversion results of top depths are found to be more accurate for actual top depths of volcanic rocks in two nearby drilled wells than those using the conventional tilt-depth method.展开更多
This paper presents a study of the geo dynamic setting and the relation between orogenic uplift and basin subsidence in the inland Zhoukou depression and Dabie orogenic belt. Since the Mesozoic the evolution of Z...This paper presents a study of the geo dynamic setting and the relation between orogenic uplift and basin subsidence in the inland Zhoukou depression and Dabie orogenic belt. Since the Mesozoic the evolution of Zhoukou depression can be divided into three stages: (1) foreland basin, (2) transitional stage, (3) fault depression. Formation and variations of basin were not only related to the orogenesis, but also consistent with the orogenic uplift.展开更多
The paleotectonic pattern,lithofacies paleogeographic features,sedimentary evolution and its controlling effects on hydrocarbon accumulation assemblages during the depositional period of the Sinian Dengying Formation ...The paleotectonic pattern,lithofacies paleogeographic features,sedimentary evolution and its controlling effects on hydrocarbon accumulation assemblages during the depositional period of the Sinian Dengying Formation in middle-upper Yangtze region were investigated based on outcrops,drilling,log and seismic data.The study shows that,(1)Affected by the breakup of the Rodinia supercontinent,the middle and upper Yangtze areas were in extensional tectonic environment during the depositional period of Dengying Formation.The carbonate platform was structurally differentiated.Intra-platform depressions controlled by syndepositional faults developed,forming a tectonic-paleogeographic pattern of"three platforms with two depressions".(2)During the depositional period of the first and second members of the Dengying Formation,rimmed platforms and intra-platform fault depressions developed in upper Yangtze area and isolated platform developed in middle Yangtze area,and there was the Xuanhan-Kaijiang ancient land block in eastern Sichuan.The depositional period of the third member of the Dengying Formation is the transformation period of tectonic-paleogeographic pattern,when a set of shallow water shelf sediment rich in mud was deposited due to transgression on the background of the eroded terrain formed in EpisodeⅠof Tongwan Movement.The sediment of the fourth member of the Dengying Formation inherited the paleogeographic pattern of the first and second members of the Dengying Formation in general,but the Deyang-Anyue intra-platform fault depression further expanded,and the middle Yangtze platform evolved into two separated platforms.(3)Tectonic-sedimentary differentiation and evolution of carbonate platform in the Sinian gave rise to two types of accumulation assemblages with wide distribution and great exploration potential,which are platform margin and intra-platform.展开更多
The basin margin slope area of Changling fault depression in Songliao Basin is dominated by intermediate-basic volcanic rocks of Huoshiling Formation,and there is still a lack of in-depth understanding of the developm...The basin margin slope area of Changling fault depression in Songliao Basin is dominated by intermediate-basic volcanic rocks of Huoshiling Formation,and there is still a lack of in-depth understanding of the development pattern and formation mechanism of high-quality reservoirs in intermediate-basic volcanic rocks in this area.Taking the intermediate volcanic rocks in Longfengshan area of Changling fault depression as an example,a comprehensive study was undertaken via core observations,thin section porosity analysis,rock physical property tests,scanning electron microscopy and X-ray diffraction analysis,combined with well log and seismic d ata.As a result,formation mechanism of a high quality reservoir was made clear based on dissolution modification effects of the volcanic rocks,and the development model of the high quality reservoir under t he dual control of lithology and fluid was established.The research shows that the volcanic rocks in this area consist of six lithologies:andesitic hydrothermal breccia,andesite,andesitic volcanic breccia,andesitic tuff,dacitic tuff and sedimentary tuff,which are controlled by structure,eruptive source,eruptive action and palaeotopography.The proximal facies of the volcanic edifice were located on the basin margin,distributed along faults mainly consisting of overflow facies intermixed with eruptive facies,and gradually transformed into thick eruptive facies(middle-source facies)and volcanic sedimentary facies(distal facies).The reservoir space of volcanic rocks was dominated by dissolution pores,which were formed by weathering and dissolution by organic acidic fluids.The thermal debris flow subphase in the middle-source facies of the volcanic edifice had a large amount of easily dissolved volcanic ash,which was close to the source rock in the centre of the basin and was a favourable area for the development of dissolution pores.This study is providing a guide for oil and gas exploration in the intermediate-basic volcanic rocks in the slope of Changling fault depression in Songliao Basin.展开更多
In recent years, great attention has been paid to oil and gas exploration in the Carboniferous-Permian strata of the Bohaiwan basin, especially the Carboniferous-Permian marine transgression, using data from drilling,...In recent years, great attention has been paid to oil and gas exploration in the Carboniferous-Permian strata of the Bohaiwan basin, especially the Carboniferous-Permian marine transgression, using data from drilling, outcrops and carbonate acid-insoluble residue experiments together with the tectonic evo- lutionary history of the peripheral orogenic zones of the North China plate and the Tan-Lu fault zones. The .';tudy concludes that marine transgressions took place on six occasions during Carboniferous-Perm- ian time in the Jiyang Depression. The marine transgressions were concentrated in the Late Carbonifer- ous: two marine transgressions occurred in the early Late Carboniferous, and the scale of the first was smaller and the time was shorter than those of the second. The other four marine transgressions hap- pened in the late Late Carboniferous, the first and the fourth of which were larger in scale and longer in time than the second and the third. The seawater came from the Jiaobei area, the eastward part of the Qinling-Dabie residual sea basin, and invaded progressively as a planar flow from south to north and from east to west. These findings have great significance for thorough analysis of the sedimentary characteristics and evolution of the Carboniferous-Permian strata in the livang Denression.展开更多
Recently,volcanic gas reservoirs in Yaoyingtai (腰英台) and Daerhan (达尔罕) tectonic belts in Changling (长岭) faulted depression of southeastern Songliao (松辽) basin have been discovered.Based on the compos...Recently,volcanic gas reservoirs in Yaoyingtai (腰英台) and Daerhan (达尔罕) tectonic belts in Changling (长岭) faulted depression of southeastern Songliao (松辽) basin have been discovered.Based on the compositions and isotopic values,the natural gas is characterized by high content of methane,low content of C2+,and C1/C1-5 beyond 0.95.Also,the natural gas contains nonhydrocarbons including carbon dioxide with the content from 20% to 40% and minor amount of N2.Combined with the isotopic values,the natural gas is generated by humic kerogen and coal-derived type,but in Daerhan,the natural gas is probably mixed by oil type gas.From the measurement of lithology and fluid inclusions in volcanic rocks,the bitumen,liquid hydrocarbon,and gas hydrocarbon inclusions are present.Through the analysis of the single gas inclusion in volcanic reservoir,the content of carbon dioxide is low,so the carbon dioxide and hydrocarbon gas of the reservoirs are not accumulated at the same time.In addition,minor amount of bitumen in the reservoirs is formed by thermal evolution of the crude oils sourced from the Yingcheng (营城) Formation mudstones through the characterizations of the biomarkers.The distribution of homogenization temperatures presents two peaks,one with the liquid hydrocarbon filling stage,and the other with gas filling stage.However,in Daerhan tectonic belt,the second peak is gas and carbon dioxide mixed filling period probably.Combined with the homogenization temperatures of salt water inclusions,the oil and gas filling period is from Qingshankou (青山口) Formation to Nenjiang (嫩江) Formation in the research area.During the charging period,minor amount of inorganic carbon dioxide filled into the trap,but plenty of inorganic carbon dioxide from the end of Sifangtai (四方台) to Eogene periods was related with the structural movement.展开更多
This paper reports the analysis on cores and rock slices, data on seismic and logging activities, characteristics of core samples, and the paleogeographic background of the Yingcheng Formation of the Xujiaweizi faulte...This paper reports the analysis on cores and rock slices, data on seismic and logging activities, characteristics of core samples, and the paleogeographic background of the Yingcheng Formation of the Xujiaweizi faulted depression in the Songliao Basin. The results show that some of the volcanic rocks were formed during subaquatic eruptions. These subaqueous volcanic rocks are further characterized by the interbedded black mudstone and tuffite, the presence of double-layer perlite enclosing aphyric or sparsely phyric rhyolite, the presence of a bentonite layer, and the coefficient of oxidation (Fe203/FeO). The types of rocks are volcanic breccia, lava breccias, perlite, rhyolite, tuff and sedimentary tuff. The subaquatic eruptions are distributed mainly in Wangjiatun, Shengping, Xuxi, Xuzhong, and Xudong. The XS-I area is the most typical. The organic abundance of over- burden mud rocks within the volcanic rocks of the Yingcheng Formation indicates that these rocks represent high-quality source rocks. The analysis also shows that continental subaquatic volcanic eruptions provide a rich supply of minerals and en- ergies for the lake basin and increase the organic matter content in the water. Moreover, the water differentiation provides a good reducing environment for the conservation of organic matter, and is beneficial for the formation of high-quality source rocks. Finally, we propose a hypothesis to describe the mode of subaquatic eruptions and the formation of high-quality source rocks.展开更多
基金Supported by the China National Science and Technology Major Project(2016ZX05026-003,2011ZX05025-003)Science and Technology Project of CNOOC Limited(YXKY-2012-SHENHAI-01)CNOOC-KJ 135 ZDXM 37 SZ 01 SHENHAI。
文摘Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin structure in the Pearl River Mouth Basin on the northern margin of the South China Sea.Three types of detachment faults of different structural levels exist:crust-mantle detachment,inter-crust detachment and upper crust detachment.It is considered that different types of extensional detachment control different subbasin structures.Many fault depressions controlled by upper crust detachment faults have been found in the Zhu I Depression located in the proximal zone.These detachment faults are usually reformed by magma emplacement or controlled by preexisting faults.Baiyun-Liwan Sag located in the hyperextension area shows different characteristics of internal structure.The Baiyun main sag with relative weak magmatism transformation is a wide-deep fault depression,which is controlled by crust-mantle detachment system.Extensive magmatism occurred in the eastern and southwest fault steps of the Baiyun Sag after Middle Eocene,and the crust ductile extensional deformation resulted in wide-shallow fault depression controlled by the upper crust detachment fault.Based on the classical lithosphere extensional breaking and basin tectonic evolution in the Atlantic margin,it is believed that the magmatic activities and pre-existing structures in the Mesozoic subduction continental margin background are important controlling factors for the diversified continental margin faulted structures in the northern South China Sea.
基金The authors acknowledge financial support from National Science and Technology Major Project of China(No.2016ZX05001-002)Important National Science and Technology Project of CNPC(No.2021DJ0202).
文摘The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality differences and origins of different types of source rocks in the Shahezi Formation,this study reconstructed the sedimentary and water environment,determined the controlling effects of fault activity,sedimentary facies,and paleo-sedimentary environment on the quality of various source rocks,by making full use of seismic,logging,core,organic geochemical and element geochemical analysis.The results show that two types of source rocks developed in the Shahezi Formation,namely,mudstones and coals.The mudstones have a relatively high abundance of organic matter,which consists of type-Ⅱ kerogen and partial type-Ⅲ kerogen,and are concentrated in Sha-I Member.The coals have a high abundance of organic matter,which consist of type-Ⅲ kerogen,and are mainly distributed in Sha-Ⅱ Member.During the deposition of Sha-I Member,intense fault activity formed arrow,deep-water lacustrine basins with high salinity and strong reducibility on the downthrow sides of faults.During the deposition of Sha-II Member,fault activity progressively weakened,and the areas of lacustrine basins enlarged to their maximum values and became wide,shallow-water basins with low salinity and low reducibility.The development of source rocks was controlled by fault activity,sedimentary facies,and paleo-sedimentary environment.Fault activity formed accommodation space on the downthrown sides of faults for mudstone accumulation,thus determining mudstone thickness.The sedimentary environment controlled the organic matter input and determined the distribution of mudstones and coals.The paleo-sedimentary environment,which consisted of paleo-salinity,as well as paleo-water depth and redox conditions,affected the accumulation and preservation of organic matter and is the main controlling factor for the quality difference of various source rocks in the Shahezi Formation.
基金supported by the Major State Basic Research Development Program of China (973 Program(No.2012CB214705))the National Natural Science Foundation of China (No. 41206035)
文摘The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formation(K 1 yc).Based on seismic interpretation,drill cores and the results of previous research,we analyzed the distribution of faults and the thickness of volcanic rocks in different periods of K 1 yc,and studied the relationship of volcanic activities and main faults.Volcanic rocks were formed in the Yingcheng period when the magma erupted along pre-existing fault zones.The volcanic activities strongly eroded the faults during the eruption process,which resulted in the structural traces in the seismic section being diffuse and unclear.The tectonic activities weakened in the study area in the depression stage.The analysis of seismic interpretation,thin section microscopy and drill cores revealed that a large number of fractures generated in the volcanic rocks were affected by later continued weak tectonic activities,which greatly improved the physical properties of volcanic reservoirs,and made the volcanic rocks of K 1 yc be favorable natural gas reservoirs.The above conclusions provide the basis to better understand the relationship of the volcanic rock distribution and faults,the mechanism of volcanic eruption and the formation of natural gas reservoirs in volcanic rocks.
基金the National Natural Science Foundation of China (No. 40572079); the Program for New Century Excellent Talents in University (No. NCET-04-0345); the Venture Capital Foundation of PetroChina (No. 2005-01-02).
文摘In order to investigate the migration and accumulation efficiency of hydrocarbon natural gas in the Xujiaweizi fault depression, and to provide new evidence for the classification of its genesis, a source rock pyrolysis experiment in a closed system was designed and carried out. Based on this, kinetic models for describing gas generation from organic matter and carbon isotope fractionation during this process were established, calibrated and then extrapolated to geologic conditions by combining the thermal history data of the Xushen-1 Well. The results indicate that the coal measures in the Xujiaweizi fault depression are typical "high-efficiency gas sources", the natural gas generated from them has a high migration and accumulation efficiency, and consequently a large-scale natural gas accumulation occurred in the area. The highly/over matured coal measures in the Xujiaweizi fault depression generate coaliferous gas with a high δ^13C1 value (〉 -20‰) at the late stage, making the carbon isotope composition of organic alkane gases abnormally heavy. In addition, the mixing and dissipation through the caprock of natural gas can result in the negative carbon isotope sequence (δ^13C1 〉δ^13C2 〉δ^13C3 〉δ^13C4) of organic alkane gases, and the dissipation can also lead to the abnormally heavy carbon isotope composition of organic alkane gases. As for the discovery of inorganic nonhydrocarbon gas reservoirs, it can only serve as an accessorial evidence rather than a direct evidence that the hydrocarbon gas is inorganic. As a result, it needs stronger evidence to classify the hydrocarbon natural gas in the Xujiaweizi fault depression as inorganic gas.
基金supported by the Exploration and Development Research Institute of the Jilin Oilfield Company Ltd. (Grant No.JLYT-YJY-2013-JS-305)
文摘The pollen and spores found in the Early Cretaceous strata of two cores from the Shuangliao Fault Depression were studied systematically, and two palynological assemblages have been recognized. Assemblage I from the Yingcheng Formation is named Paleoconiferus-Pinuspollenites; the assemblage is characterized by an extremely high content of Paleoconifer pollen. Assemblage II from Member 1 of the Denglouku Formation is named Cicatricosisporites-Cyathidites-Pinuspollenites; the assemblage is characterized by the abundant presence of Laevigati spores, but less Paleoconifer pollen. According to the palynological data and zircon U-Pb dating, the geological age of the Yingcheng Formation is thought to be Aptian-Albian, and that of the Denglouku Formation is thought to be Early Albian. On the basis of the composition of each assemblage, we can infer that during the depositional period of the Yingcheng Formation, the paleovegetation was mainly conifer forest, the paleoclimate was consistent with the temperate climate of today, and the paleoenvironment was humid feature. During the depositional period of Member 1 of the Denglouku Formation, the paleovegetation was mainly conifer forest and shrubs, the paleoclimate was consistent with the subtropical climate of today, and the paleoenvironment was humid. The results significantly improve our understanding of the stratigraphy in the Shuangliao Fault Depression, provide biostratigraphic evidence for the division and correlation of Early Cretaceous strata in the Shuangliao Fault Depression, and provide new data for analyzing paleovegetation and paleoclimate in the Songliao Basin.
基金supported by the National Natural Science Fund Project(grant No.41430322)the National Basic Research Program of China(grant No.2009CB219306)the Open Fund of the State Key Laboratory Base of Unconventional Oil and Gas Accumulation and Exploitation,Northeast Petroleum University(grant No.2010DS670083-201301)
文摘Through the analysis of core descriptions, well-logs, seismic data, geochemical data and structural settings of the volcanic rock of the Yingcheng Formation in the Xujiaweizi fault depression, Songliao Basin, and the geological section of the Yingcheng Formation in the southeast uplift area, this work determined the existence of volcanic weathering crust exists in the study area. The identification marks on the volcanic weathering crust can be recognized on the scale of core, logging, seismic, geochemistry, etc. In the study area, the structure of this crust is divided into clay layer, leached zone, fracture zone and host rocks, which are 5-118 m thick (averaging 27.5 m). The lithology of the weathering crust includes basalt, andesite, rhyolite and volcanic breccia, and the lithofacies are igneous effusive and extrusive facies. The volcanic weathering crusts are clustered together in the Dashen zone and the middle of the Xuzhong zone, whereas in the Shengshen zone and other parts of the Xuzhong zone, they have a relatively scattered distribution. It is a major volcanic reservoir bed, which covers an area of 2104.16 km2. According to the geotectonic setting of the Songliao Basin, the formation process of the weathering crust is complete. Combining the macroscopic and microscopic features of the weathering crust of the Yingcheng Formation in Xujiaweizi with the logging and three-dimensional seismic sections, we established a developmental model of the paleo uplift and a developmental model of the slope belt that coexists with the sag on the Xujiaweizi volcanic weathering crust. In addition, the relationship between the volcanic weathering crust and the formation and distribution of the oil/gas reservoir is discussed.
基金Supported by China Geological Survey projects(DD20190115,DD20160202)。
文摘Distribution characteristics,organic matter development characteristics,gas-bearing characteristics,reservoir characteristics,and preservation conditions of the Shahezi Formation shale of Lower Cretaceous in the Lishu fault depression,Songliao Basin,NE China,are analyzed using organic geochemical,whole rock,and SEM analysis data,and CO_(2)and N_(2) adsorption and high-pressure mercury injection experiment data in combination with the tectonic and sedimentation evolution of the region to reveal the geological conditions for enrichment and resource potential of continental shale gas.The organic-rich shale in the Lower Cretaceous of the Lishu fault depression is mainly developed in the lower submember of the second member of the Shahezi Formation(K_(1)sh_(2)^(1) Fm.)and is thick and stable in distribution.The shale has high TOC,mainly types II_(1) and II_(2) organic matter,and is in the mature to the over-mature stage.The volcanic activity,salinization,and reduction of the water environment are conducive to the formation of the organic-rich shale.The shale reservoirs have mainly clay mineral intergranular pores,organic matter pores,carbonate mineral dissolution pores,and foliated microfractures as storage space.The pores are in the mesopore range of 10–50 nm,and the microfractures are mostly 5–10μm wide.Massive argillaceous rocks of lowland and highstand domains are deposited above and below the gas-bearing shale separately in the lower submember of the K_(1)sh_(2)^(1) Fm.,act as the natural roof and floor in the process of shale gas accumulation and preservation,and control the shale gas enrichment.Based on the above understandings,the first shale gas exploration well in Shahezi Formation was drilled in the Lishu fault depression of Songliao Basin.After fracturing,the well tested a daily gas production of 7.6×10^(4) m^(3),marking a breakthrough in continental shale gas exploration in the Shahezi Formation(K1 sh Fm.)of the Lishu fault depression in Songliao Basin.The exploration practice has reference significance for the exploration of continental shale gas in the Lower Cretaceous of Songliao Basin and its periphery.
基金granted by the National Natural Science Foundation(Grant No.41372132)Important National Science&Technology Specific Projects(Grant No.2011ZX05006-003)
文摘The Bohai Bay Basin contains many depressions with varying degrees of hydrocarbon enrichment associated with the geological structures of different depressions. This study discussed the relationship between the geological structures and hydrocarbon enrichment of the depressions in the Bohai Bay Basin. Based on the Paleogene strata distribution and the length to width ratio of different depressions, their geological structures are divided into three types in plan-view: open(length/width 〈 2), narrow(length/width 〉 4) and transitional types(length/width 2-4). In cross section, the geological structures can be divided into dustpan I, dustpan II and double-faulted types. Based on tectonic evolution and sedimentary characteristics, the depressions are classified into early-formed, inherited and late-formed categories. Generally, narrow depressions are mainly located in the northeast and southwest of the Bohai Bay Basin, while open depressions are dominantly distributed in the central area of the basin; late-formed depressions are mainly around the Bohai sea area, and early-formed depressions are mostly located in the periphery of the basin. Geological structures of the depressions control the formation of the source, reservoir and cap rocks as well as hydrocarbon accumulation setting, and further influence the pay zones and oil-bearing sequence. In detail, dustpan II and doublefaulted depressions mainly have A-type sags, which often possess better hydrocarbon generation conditions than dustpan I ones; hydrocarbons in open dustpan II depressions tend to accumulate in the central uplift areas or buried hill, while those in narrow dustpan I depressions always accumulate in gentle slope belts. The oil-bearing sequence for different evolutional depressions corresponds well with the sedimentary strata of the main development stages of depressions. In early-formed depressions, hydrocarbons are mainly enriched in deeply buried reservoirs, while in late-formed depressions hydrocarbons are abundant in the relatively shallow traps. In summary, most inherited and late-formed dustpan II depressions are enriched in hydrocarbons due to their extensive source rocks and good source-reservoir-seal assemblages, whereas dustpan I and early-formed depressions are relatively poor in hydrocarbons.
文摘This paper gives a study of 3 D crustal seismic velocity changes in the Weihe fault depression basin, in which the overlapping sphere iterative reconstruction method of tomographic image was used in connection with the two point fast ray tracing technique. By means of theoretical modeling, the monitoring function of the observatory network system of Shaanxi Province was tested. Using the seismic data of the network, seismic tomographic inversion imaging of the crustal seismic velocity in the Weihe fault basin was studied. The results are as follows: In the Tongchuan Yaoxian area to the north of Jingyang, there is a high velocity region extending nearly in NS direction, the highest velocity value is around Tongchuan. To the southwest of Shangxian and Lantian, there is a low velocity zone about 100 km long and about 50 km wide, inside which there are two regions of the lowest velocity 50 km apart. The epicenters of historical strong earthquakes are mainly on the boundary of high velocity regions or in regions of fairly high velocity. In the eastern and western parts of the south margin of the Qinling Mountains, there is an obvious lateral nonhomogeneity of seismic velocity.
文摘This paper makes a systematical study on characteristics of structure and motion of the tectonic blocks in northern part of the Shanxi fault depression zone by means of geometrical and kinematical analysis of the blocks. The ki-netic behavior of the blocks is discussed by comparing associated geomorphic features of fault movement. All analyses and studies are based on a Domino model. The block movement, fault basin extension and their regional distribution are systematically investigated. The result shows: (a) The studied region is divided into sub-regions by NW striking faults: the western, middle and eastern sub-region with crustal extension being 4.46 km, 2.80 km and 1.86 km, respectively. The extensional amount of each block in the region is estimated being generally about 1 km. The calculated result using the block motion model approximately fits the data of geologic survey. (b) Block kin-ematical features are obviously different between the northern and southern part, with the Hengshan block in be-tween, of the studied region. Moreover, the magnitude of the largest historical earthquake in the northern part is about 6, while that in the southern is 7. The faulted blocks in the northern sub-region show northwestward exten-sion, indicating a feature of extensional graben, while the blocks in the southern part manifest tilt motion, extend-ing southeastward, in the opposite sense of fault dipping. Additional tectonic stress generated by block rotation may be one of major factors affecting seismogenic process in the region. It is responsible for the difference in the movement of the block boundary faults and seismic activities between the two sub-regions.
文摘Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng of Shandong Province and Luobei of Heilongjiang Province in China to the territory of Russia. Its formation is related to the subduction of Kula-Pacific plate to the Asian continent. It is oriented approximately parallel to the eastern edge of Asia. It is dominated by the sinistral translation from Jurassic to Eocene and then by dextrose strike-slip. It has the following characters: (1)clear linear character; (2)sharp dip angle, usually changing between normal and reverse faults; (3)showing braided structure on the plan and flower structure in section;(4)alternated by uplifts and sags along the fault belt; (5)many stages of the eruptions of alkaline to calc-alkaline basalt magma along the fault belt; and (6) frequent activities of earthquakes along the fault belt. Its control over the oil-gas distribution is shown by the following racts: (1) the formation of many oil-bearing fault depressions; (2) the increase of the basin area it has passed through, thus increasing the basin's subsiding quantity and the oil reservoirs; and (3)the formation of many kinds of oil-gas trap structures.
基金supported by the National Science and Technology Major Project (2008ZX05002-006-007HZ)
文摘Through natural gas exploration in the Changling Fault Depression,abundant natural gas flows were obtained and high-quality source rocks were also reveiled.Based on bulk analyses,organic matter abundance,organic matter type and thermal maturity of the source rocks were studied systematically.At the same time,gas gener-ating intensity and gas generating quantity were quantitatively analyzed by using basin modeling technologies.The results indicated that gas source rocks of the Shahezi Formation are characterized by abundant organic matter and dark mudstone distributions and high-over thermal maturity.They possess high gas generating intensity with the biggest value surpassing 500×108 m3/km2,and large gas generating quantity,accounting from 74.40% of the total amount.The Yingcheng Formation has good gas-source rocks with moderate dark mudstone and relatively high organic matter.It has type-Ⅲ organic matter and low-over thermal maturity.The gas generating intensity is moderate,between 20×108 and 60×108 m3/km2.The gas generating quantity is 13.63% of the total amount.The Huoshiling Formation has relatively good source rocks with limited dark mudstone and low organic matter.It has type-Ⅲ kerogen and over-thermal maturity.The gas generating quantity is 7.10% of the total amount.The Denglouku Formation has poor-gas source rocks,and is characterized by undeveloped dark mudstone and low organic matter abundance.It has type-Ⅲ organic matter and low-high thermal maturity.Hydrocarbon gases in the Changling Fault Depression mainly originated from the Shahezi Formation,and secondarily from the Yingcheng Formation.The contribution of the Huoshiling Formation gas source rocks is relatively small.
基金Supported by the National Natural Science Foundation of China(42302183,42272156,41922015)Sanya City Science and Technology Innovation Project(2022KJCX51).
文摘The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined quantitatively by mathematical model. The tight gas charging and accumulation mechanisms were revealed from a combination of physical simulation of nuclear magnetic resonance coupling displacement, numerical simulation considering material and mechanical equilibria, as well as actual geological observation. The results show that gas migrates into tight rocks to preferentially form a gas saturation stabilization zone near the source-reservoir interface. When the gas source is insufficient, gas saturation reduction zone and uncharged zone are formed in sequence from the source-reservoir interface. The better the source rock conditions with more gas expulsion volume and higher overpressure, the thicker the gas saturation stabilization and reduction zones, and the higher the overall gas saturation. When the source rock conditions are limited, the better the tight reservoir conditions with higher porosity and permeability as well as larger pore throat, the thinner the gas saturation stabilization and reduction zones, but the gas saturation is high. The sweet spot of tight gas is developed in the high-quality reservoir near the source rock, which often corresponds to the gas saturation stabilization zone. The numerical simulation results by mathematical model agree well with the physical simulation results by nuclear magnetic resonance coupling displacement, and reasonably explain the gas-water distribution and production pattern of deep reservoirs in the Xujiaweizi fault depression of the Songliao Basin and tight gas reservoirs in the Linxing-Huangfu area of the Ordos Basin.
基金supported by National Natural Science Foundation of China(No.41504098 and 41504054)Natural Program on Key Basic Research Project(No.2015CB453002)
文摘The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to resolve such weaknesses, this paper presents an improved tilt-depth method based on the magnetic anomaly expression of vertical contact with a finite depth extent, which can simultaneously estimate top and bottom depths of magnetic bodies. In addition, multiple characteristic points are selected on the tilt angle map for joint computation to improve reliability of inversion solutions. Two- and three- dimensional model tests show that this improved tilt-depth method is effective in inverting buried depths of top and bottom bodies, and has a higher inversion precision for top depths than the conventional method. The improved method is then used to process aeromagnetic data over the Changling Fault Depression in the Songliao Basin, and inversion results of top depths are found to be more accurate for actual top depths of volcanic rocks in two nearby drilled wells than those using the conventional tilt-depth method.
基金The study is supported by the Former Ministry of Geology and Min- eral Resources of China
文摘This paper presents a study of the geo dynamic setting and the relation between orogenic uplift and basin subsidence in the inland Zhoukou depression and Dabie orogenic belt. Since the Mesozoic the evolution of Zhoukou depression can be divided into three stages: (1) foreland basin, (2) transitional stage, (3) fault depression. Formation and variations of basin were not only related to the orogenesis, but also consistent with the orogenic uplift.
基金Supported by the China National Science and Technology Major Project(2016ZX05004-001)
文摘The paleotectonic pattern,lithofacies paleogeographic features,sedimentary evolution and its controlling effects on hydrocarbon accumulation assemblages during the depositional period of the Sinian Dengying Formation in middle-upper Yangtze region were investigated based on outcrops,drilling,log and seismic data.The study shows that,(1)Affected by the breakup of the Rodinia supercontinent,the middle and upper Yangtze areas were in extensional tectonic environment during the depositional period of Dengying Formation.The carbonate platform was structurally differentiated.Intra-platform depressions controlled by syndepositional faults developed,forming a tectonic-paleogeographic pattern of"three platforms with two depressions".(2)During the depositional period of the first and second members of the Dengying Formation,rimmed platforms and intra-platform fault depressions developed in upper Yangtze area and isolated platform developed in middle Yangtze area,and there was the Xuanhan-Kaijiang ancient land block in eastern Sichuan.The depositional period of the third member of the Dengying Formation is the transformation period of tectonic-paleogeographic pattern,when a set of shallow water shelf sediment rich in mud was deposited due to transgression on the background of the eroded terrain formed in EpisodeⅠof Tongwan Movement.The sediment of the fourth member of the Dengying Formation inherited the paleogeographic pattern of the first and second members of the Dengying Formation in general,but the Deyang-Anyue intra-platform fault depression further expanded,and the middle Yangtze platform evolved into two separated platforms.(3)Tectonic-sedimentary differentiation and evolution of carbonate platform in the Sinian gave rise to two types of accumulation assemblages with wide distribution and great exploration potential,which are platform margin and intra-platform.
基金Supported by National Natural Science Foundation of China(Nos.41972313,41790453).
文摘The basin margin slope area of Changling fault depression in Songliao Basin is dominated by intermediate-basic volcanic rocks of Huoshiling Formation,and there is still a lack of in-depth understanding of the development pattern and formation mechanism of high-quality reservoirs in intermediate-basic volcanic rocks in this area.Taking the intermediate volcanic rocks in Longfengshan area of Changling fault depression as an example,a comprehensive study was undertaken via core observations,thin section porosity analysis,rock physical property tests,scanning electron microscopy and X-ray diffraction analysis,combined with well log and seismic d ata.As a result,formation mechanism of a high quality reservoir was made clear based on dissolution modification effects of the volcanic rocks,and the development model of the high quality reservoir under t he dual control of lithology and fluid was established.The research shows that the volcanic rocks in this area consist of six lithologies:andesitic hydrothermal breccia,andesite,andesitic volcanic breccia,andesitic tuff,dacitic tuff and sedimentary tuff,which are controlled by structure,eruptive source,eruptive action and palaeotopography.The proximal facies of the volcanic edifice were located on the basin margin,distributed along faults mainly consisting of overflow facies intermixed with eruptive facies,and gradually transformed into thick eruptive facies(middle-source facies)and volcanic sedimentary facies(distal facies).The reservoir space of volcanic rocks was dominated by dissolution pores,which were formed by weathering and dissolution by organic acidic fluids.The thermal debris flow subphase in the middle-source facies of the volcanic edifice had a large amount of easily dissolved volcanic ash,which was close to the source rock in the centre of the basin and was a favourable area for the development of dissolution pores.This study is providing a guide for oil and gas exploration in the intermediate-basic volcanic rocks in the slope of Changling fault depression in Songliao Basin.
基金sponsored by the National Science and Technology Major Project of China (No.2011ZX05008)
文摘In recent years, great attention has been paid to oil and gas exploration in the Carboniferous-Permian strata of the Bohaiwan basin, especially the Carboniferous-Permian marine transgression, using data from drilling, outcrops and carbonate acid-insoluble residue experiments together with the tectonic evo- lutionary history of the peripheral orogenic zones of the North China plate and the Tan-Lu fault zones. The .';tudy concludes that marine transgressions took place on six occasions during Carboniferous-Perm- ian time in the Jiyang Depression. The marine transgressions were concentrated in the Late Carbonifer- ous: two marine transgressions occurred in the early Late Carboniferous, and the scale of the first was smaller and the time was shorter than those of the second. The other four marine transgressions hap- pened in the late Late Carboniferous, the first and the fourth of which were larger in scale and longer in time than the second and the third. The seawater came from the Jiaobei area, the eastward part of the Qinling-Dabie residual sea basin, and invaded progressively as a planar flow from south to north and from east to west. These findings have great significance for thorough analysis of the sedimentary characteristics and evolution of the Carboniferous-Permian strata in the livang Denression.
基金supported by East China Branch of SINOPEC (No. G1414-06-KK-0230)
文摘Recently,volcanic gas reservoirs in Yaoyingtai (腰英台) and Daerhan (达尔罕) tectonic belts in Changling (长岭) faulted depression of southeastern Songliao (松辽) basin have been discovered.Based on the compositions and isotopic values,the natural gas is characterized by high content of methane,low content of C2+,and C1/C1-5 beyond 0.95.Also,the natural gas contains nonhydrocarbons including carbon dioxide with the content from 20% to 40% and minor amount of N2.Combined with the isotopic values,the natural gas is generated by humic kerogen and coal-derived type,but in Daerhan,the natural gas is probably mixed by oil type gas.From the measurement of lithology and fluid inclusions in volcanic rocks,the bitumen,liquid hydrocarbon,and gas hydrocarbon inclusions are present.Through the analysis of the single gas inclusion in volcanic reservoir,the content of carbon dioxide is low,so the carbon dioxide and hydrocarbon gas of the reservoirs are not accumulated at the same time.In addition,minor amount of bitumen in the reservoirs is formed by thermal evolution of the crude oils sourced from the Yingcheng (营城) Formation mudstones through the characterizations of the biomarkers.The distribution of homogenization temperatures presents two peaks,one with the liquid hydrocarbon filling stage,and the other with gas filling stage.However,in Daerhan tectonic belt,the second peak is gas and carbon dioxide mixed filling period probably.Combined with the homogenization temperatures of salt water inclusions,the oil and gas filling period is from Qingshankou (青山口) Formation to Nenjiang (嫩江) Formation in the research area.During the charging period,minor amount of inorganic carbon dioxide filled into the trap,but plenty of inorganic carbon dioxide from the end of Sifangtai (四方台) to Eogene periods was related with the structural movement.
基金supported by National Basic Research Program of China(Grant No.2009CB219306)Key-Lab for Evolution of Past Life and Environment in Northeast Asia of Ministry of Education,211 Project of Jilin University and Basic Scientific Research Business Funds Program of Ministry of Education in 2009(Innovative Team Development Plans of Jilin University)
文摘This paper reports the analysis on cores and rock slices, data on seismic and logging activities, characteristics of core samples, and the paleogeographic background of the Yingcheng Formation of the Xujiaweizi faulted depression in the Songliao Basin. The results show that some of the volcanic rocks were formed during subaquatic eruptions. These subaqueous volcanic rocks are further characterized by the interbedded black mudstone and tuffite, the presence of double-layer perlite enclosing aphyric or sparsely phyric rhyolite, the presence of a bentonite layer, and the coefficient of oxidation (Fe203/FeO). The types of rocks are volcanic breccia, lava breccias, perlite, rhyolite, tuff and sedimentary tuff. The subaquatic eruptions are distributed mainly in Wangjiatun, Shengping, Xuxi, Xuzhong, and Xudong. The XS-I area is the most typical. The organic abundance of over- burden mud rocks within the volcanic rocks of the Yingcheng Formation indicates that these rocks represent high-quality source rocks. The analysis also shows that continental subaquatic volcanic eruptions provide a rich supply of minerals and en- ergies for the lake basin and increase the organic matter content in the water. Moreover, the water differentiation provides a good reducing environment for the conservation of organic matter, and is beneficial for the formation of high-quality source rocks. Finally, we propose a hypothesis to describe the mode of subaquatic eruptions and the formation of high-quality source rocks.