期刊文献+
共找到130篇文章
< 1 2 7 >
每页显示 20 50 100
Denoising Fault-Aware Wavelet Network:A Signal Processing Informed Neural Network for Fault Diagnosis 被引量:8
1
作者 Zuogang Shang Zhibin Zhao Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期1-18,共18页
Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods dif... Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods difficult to be trusted and understood by industrial users. In addition, the extraction of weak fault features from signals with heavy noise is imperative in industrial applications. To address these limitations, inspired by the Filterbank-Feature-Decision methodology, we propose a new Signal Processing Informed Neural Network(SPINN) framework by embedding SP knowledge into the DL model. As one of the practical implementations for SPINN, a denoising fault-aware wavelet network(DFAWNet) is developed, which consists of fused wavelet convolution(FWConv), dynamic hard thresholding(DHT),index-based soft filtering(ISF), and a classifier. Taking advantage of wavelet transform, FWConv extracts multiscale features while learning wavelet scales and selecting important wavelet bases automatically;DHT dynamically eliminates noise-related components via point-wise hard thresholding;inspired by index-based filtering, ISF optimizes and selects optimal filters for diagnostic feature extraction. It’s worth noting that SPINN may be readily applied to different deep learning networks by simply adding filterbank and feature modules in front. Experiments results demonstrate a significant diagnostic performance improvement over other explainable or denoising deep learning networks. The corresponding code is available at https://github. com/alber tszg/DFAWn et. 展开更多
关键词 Signal processing deep learning Explainable DENOISING fault diagnosis
下载PDF
Hierarchical multihead self-attention for time-series-based fault diagnosis
2
作者 Chengtian Wang Hongbo Shi +1 位作者 Bing Song Yang Tao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期104-117,共14页
Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa... Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches. 展开更多
关键词 Self-attention mechanism deep learning Chemical process Time-series fault diagnosis
下载PDF
Advancements in Photovoltaic Panel Fault Detection Techniques
3
作者 Junyao Zheng 《Journal of Materials Science and Chemical Engineering》 2024年第6期1-11,共11页
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech... This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations. 展开更多
关键词 Photovoltaic Panels fault Detection deep Learning Image processing
下载PDF
Extensional Tectonic System of Erlian Fault Basin Groupand Its Deep Background
4
作者 Ren Jianye Li Sitian Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 Jiao Guihao Exploration and Development Research Institute, Huabei Oil Administration Bureau, Renqiu 062552 Chen Ping Faculty of Business Administratio 《Journal of Earth Science》 SCIE CAS CSCD 1998年第3期44-49,共6页
The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abund... The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abundant geological and petroleum information accumulated in process of industry oil and gas exploration and development of the Erlian basin group is comprehensively analyzed, the structures related to formation of basin are systematically studied, and the complete extensional tectonic system of this basin under conditions of wide rift setting and low extensional ratio is revealed by contrasting study with Basin and Range Province of the western America. Based on the above studies and achievements of the former workers, the deep background of the basin development is treated. 展开更多
关键词 Late Mesozoic rifting extensional tectonic system deep process Erlian fault basin group.
下载PDF
Fault diagnosis for distillation process based on CNN–DAE 被引量:13
5
作者 Chuankun Li Dongfeng Zhao +3 位作者 Shanjun Mu Weihua Zhang Ning Shi Lening Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第3期598-604,共7页
Distillation is the most widely used operation for liquid mixture separation in the chemical industry. It is of great importance to detect and diagnose faults in distillation process. Due to the strong feedback and co... Distillation is the most widely used operation for liquid mixture separation in the chemical industry. It is of great importance to detect and diagnose faults in distillation process. Due to the strong feedback and coupling of processes in a distillation column, it is difficult to use deep auto-encoders(DAEs) alone to achieve good results in detecting and diagnosing faults, in terms of accuracy and efficiency. This paper proposes a hybrid fault-diagnosis model based on convolutional neural networks(CNNs) and DAEs, by integrating the powerful capability of CNN in feature extraction and of DAE in classification. A case study was carried out with the distillation process of depropanization. It is shown that the proposed hybrid model is of good performance compared to other models, in terms of the accuracy of fault detection in such a process. Also, with the increase of structural layers of the CNN–DAE model, the diagnostic accuracy will be improved, with an optimal accuracy of 92.2%. 展开更多
关键词 Convolutional NEURAL networks deep auto-encoders DISTILLATION process fault diagnosis
下载PDF
Study on anti-faulting design process of Urumqi subway line 2 tunnel crossing reverse fault 被引量:6
6
作者 An Shao Tao Lianjin Bian Jin 《Journal of Southeast University(English Edition)》 EI CAS 2020年第4期425-435,共11页
For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven thre... For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface. 展开更多
关键词 subway tunnel finite element method anti-faulting design process fault rupture surface buried depth flexible joint
下载PDF
Identification of abnormal conditions in high-dimensional chemical process based on feature selection and deep learning 被引量:4
7
作者 Wende Tian Zijian Liu +2 位作者 Lening Li Shifa Zhang Chuankun Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1875-1883,共9页
Identification of abnormal conditions is essential in the chemical process.With the rapid development of artificial intelligence technology,deep learning has attracted a lot of attention as a promising fault identific... Identification of abnormal conditions is essential in the chemical process.With the rapid development of artificial intelligence technology,deep learning has attracted a lot of attention as a promising fault identification method in chemical process recently.In the high-dimensional data identification using deep neural networks,problems such as insufficient data and missing data,measurement noise,redundant variables,and high coupling of data are often encountered.To tackle these problems,a feature based deep belief networks(DBN)method is proposed in this paper.First,a generative adversarial network(GAN)is used to reconstruct the random and non-random missing data of chemical process.Second,the feature variables are selected by Spearman’s rank correlation coefficient(SRCC)from high-dimensional data to eliminate the noise and redundant variables and,as a consequence,compress data dimension of chemical process.Finally,the feature filtered data is deeply abstracted,learned and tuned by DBN for multi-case fault identification.The application in the Tennessee Eastman(TE)process demonstrates the fast convergence and high accuracy of this proposal in identifying abnormal conditions for chemical process,compared with the traditional fault identification algorithms. 展开更多
关键词 Chemical process deep Belief Networks fault identification Generative Adversarial Networks Spearman Rank Correlation
下载PDF
Locally Linear Back-propagation Based Contribution for Nonlinear Process Fault Diagnosis 被引量:5
8
作者 Jinchuan Qian Li Jiang Zhihuan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期764-775,共12页
This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fau... This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fault diagnosis problem through extracting nonlinear features. When the on-line fault diagnosis task is in progress, a locally linear model is firstly built at the current fault sample. According to the basic idea of reconstruction based contribution(RBC), the propagation of fault information is described by using back-propagation(BP) algorithm. Then, a contribution index is established to measure the correlation between the variable and the fault, and the final diagnosis result is obtained by searching variables with large contributions. The smearing effect, which is an important factor affecting the performance of fault diagnosis, can be suppressed as well,and the theoretical analysis reveals that the correct diagnosis can be guaranteed by LLBBC. Finally, the feasibility and effectiveness of the proposed method are verified through a nonlinear numerical example and the Tennessee Eastman benchmark process. 展开更多
关键词 Auto-encoder(AE) deep learning fault diagnosis LOCALLY LINEAR model nonlinear process reconstruction BASED contribution(RBC)
下载PDF
Fault Detection and Identification Using Deep Learning Algorithms in Induction Motors 被引量:1
9
作者 Majid Hussain Tayab Din Memon +2 位作者 Imtiaz Hussain Zubair Ahmed Memon Dileep Kumar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第11期435-470,共36页
Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown.Recently,Motor Current Signature Analysis(MCSA)is widely repo... Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown.Recently,Motor Current Signature Analysis(MCSA)is widely reported as a condition monitoring technique in the detection and identification of individual andmultiple Induction Motor(IM)faults.However,checking the fault detection and classification with deep learning models and its comparison among them selves or conventional approaches is rarely reported in the literature.Therefore,in this work,wepresent the detection and identification of induction motor faults with MCSA and three Deep Learning(DL)models namely MLP,LSTM,and 1D-CNN.Initially,we have developed the model of Squirrel Cage induction motor in MATLAB and simulated it for single phasing and stator winding faults(SWF)using Fast Fourier Transform(FFT),Short Time Fourier Transform(STFT),and Continuous Wavelet Transform(CWT)to detect and identify the healthy and unhealthy conditions with phase to ground,single phasing and in multiple fault conditions using Motor Current Signature Analysis.The faults impact on stator current is presented in the time and frequency domain(i.e.,power spectrum).The simulation results show that the scalogram has shown good results in time-frequency analysis for fault and showing its impact on the energy of current during individual fault and multiple fault conditions.This is further investigated with three deep learning models(i.e.,MLP,LSTM,and 1D-CNN)for checking the fault detection and identification(i.e.,classification)improvement in a three-phase induction motor.By simulating the three-phase induction motor in various healthy and unhealthy conditions in MATLAB,we have collected current signature data in the time domain,labeled them accordingly and created the 50 thousand samples dataset for DL models.All the DL models are trained and validated with a suitable number of architecture layers.By simulation,the multiclass confusion matrix,precision,recall,and F1-score are obtained in several conditions.The result shows that the stator current signature of the motor can be used to detect individual and multiple faults.Moreover,deep learning models can efficiently classify the induction motor faults based on time-domain data of the stator current signature.In deep learning(DL)models,the LSTM has shown better accuracy among all other three models.These results show that employing deep learning in fault detection and identification of induction motors can be very useful in predictive maintenance to avoid shutdown and production cycle stoppage in the industry. 展开更多
关键词 Condition monitoring motor fault diagnosis stator winding faults deep learning signal processing
下载PDF
基于深度置信网络的多模态过程故障评估方法及应用 被引量:1
10
作者 张凯 杨朋澄 +1 位作者 彭开香 陈志文 《自动化学报》 EI CAS CSCD 北大核心 2024年第1期89-102,共14页
传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性–个性深度置信网络(Common and specific deep belief network,CS-DBN),该网络充分... 传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性–个性深度置信网络(Common and specific deep belief network,CS-DBN),该网络充分利用深度置信网络(Deep belief network,DBN)的深度分层特征提取能力,通过度量多模态数据间分布的相似性和差异性,进一步得到能够反映多模态过程共有信息的共性特征以及反映每个模态独有信息的个性特征;其次,基于CS-DBN,利用多模态过程的已知故障等级数据生成多模态共性–个性特征集,通过加权逻辑回归构建故障等级评估模型;最后,将所提方法应用于带钢热连轧生产过程的故障等级评估中.应用结果表明,随着多模态故障等级数据的增加,所提方法的评估准确率逐渐增加,当故障信息充足时,评估准确率可达98.75%;故障信息不足时,与传统方法相比,评估准确率提升近10%. 展开更多
关键词 多模态过程 故障等级评估 共性–个性特征 深度置信网络 带钢热连轧
下载PDF
走滑断裂带三维地震特征增强处理与描述研究
11
作者 龚伟 吕海涛 +2 位作者 林新 李弘艳 张荣 《西北地质》 CAS CSCD 北大核心 2024年第2期59-66,共8页
走滑断裂带由于纵向断距小,超深层地震信号弱,常规叠前深度偏移地震资料难以满足超深层断裂带精细描述需求。为提高断裂带成像精度,指导走滑断裂带解释描述和评价部署,以顺北地区走滑断裂带发育区三维地震资料为例,建立了一套以提高地... 走滑断裂带由于纵向断距小,超深层地震信号弱,常规叠前深度偏移地震资料难以满足超深层断裂带精细描述需求。为提高断裂带成像精度,指导走滑断裂带解释描述和评价部署,以顺北地区走滑断裂带发育区三维地震资料为例,建立了一套以提高地震资料品质的保真保幅优化处理、频谱恢复提高分辨率处理、频谱分解处理、频率域多尺度断裂检测等技术为主的走滑断裂带地震特征增强处理与描述技术,该技术组合有效拓宽了地震数据频带,提高了地震数据分辨率,使超深走滑断裂带成像精度更高,为超深走滑断裂带的精细解释、描述评价、三维雕刻提供了高品质资料基础。结合顺北地区前人研究成果,综合利用频谱恢复提高分辨率处理、频谱分解处理、频率域断裂检测数据,不同尺度断裂带特征及断储关系预测效果更好,为进一步评价断裂带和部署井位提供了技术支撑。 展开更多
关键词 超深走滑断裂带 保真保幅优化处理 频谱恢复提高分辨率处理 频谱分解处理 断裂带检测
下载PDF
宝坻-苗庄凸起新生断裂脆韧性转换深度研究
12
作者 李赫 董一兵 +5 位作者 王熠熙 高武平 闫成国 蔡玲玲 吴博洋 彭钊 《Applied Geophysics》 SCIE CSCD 2024年第1期188-202,206,共16页
现今地震是最新构造活动的最直接表现,是认识大陆内部非刚性变形特征的最有力工具。尤其是对晚更新世以来开始活动的新生断裂来说,由于发育成熟度低,几何构造上贯通性差且不同区段走向/不同深度倾向差异明显,地震能够揭示其三维空间的变... 现今地震是最新构造活动的最直接表现,是认识大陆内部非刚性变形特征的最有力工具。尤其是对晚更新世以来开始活动的新生断裂来说,由于发育成熟度低,几何构造上贯通性差且不同区段走向/不同深度倾向差异明显,地震能够揭示其三维空间的变化,尤其是脆韧性转换深度特征,促进对新生活动断裂孕育、发震过程的认识。渤海湾盆地新生走滑活动断裂曾多次发生强震,如唐山M_(S)7.8、三次宁河M_(S)≥6.2地震,这些地震揭示的地壳脆-韧性转换深度对认识该地区地震发震机理和活动性具有重要的现实意义。本文以渤海湾盆地内宝坻-苗庄凸起新生断裂为目标断裂,以发生于宝坻凸起的2012年宝坻M_(S)4.0、M_(S)3.5地震以及发生于苗庄凸起的1976年宁河M_(S)6.2、M_(S)6.9、1977年宁河M_(S)6.2地震为研究对象,基于首都圈数字地震台网的波形资料,采用CAP方法研究宝坻M_(S)4.0、M_(S)3.5地震震源机制解和震源深度,利用近震转换波Sp精确确定震源深度,采用双差方法定位两个地震序列的震源位置,并结合其他资料探讨该地区地震的发震机理以及新生断裂脆韧性转换深度。结果显示:(1)宝坻M_(S)4.0、M_(S)3.5地震震源性质与宝坻-苗庄凸起出露地表的已知断裂不尽相符,结合宁河三次MS≥6.2地震震源参数的有关研究成果,推测它们均发震于宝坻-宁河深大断裂;(2)结合震源区电性结构以及流变结构等模型,宝坻-苗庄凸起这五次显著地震揭示出宝坻-宁河深大断裂的脆韧性转换深度为15km左右;(3)结合渤海湾盆地动力演化过程以及深部地球物理探测等相关资料,推测该地区地震活动主要是宝坻-宁河深大断裂与深部流体作用的结果。 展开更多
关键词 新生断裂 渤海湾盆地 宝坻-苗庄凸起 宝坻-宁河深大断裂 脆韧性转换深度
下载PDF
储能变流器信号高精度故障诊断方法
13
作者 王宇 祁琦 +1 位作者 王纯 许才 《计算机工程》 CAS CSCD 北大核心 2024年第8期389-396,共8页
随着能源转型和碳中和的全球发展趋势,储能变流器关键组件的稳定性变得至关重要。特别是其功率器件和散热器在实际运行中的稳定性直接关系到整个系统的可靠性。关注储能变流器功率模组振动信号的故障诊断问题,传统诊断方法处理复杂信号... 随着能源转型和碳中和的全球发展趋势,储能变流器关键组件的稳定性变得至关重要。特别是其功率器件和散热器在实际运行中的稳定性直接关系到整个系统的可靠性。关注储能变流器功率模组振动信号的故障诊断问题,传统诊断方法处理复杂信号时往往面临挑战,需要频繁地调整参数。此外,由于储能变流器的工作环境复杂,现有深度学习诊断方法的性能也不尽如人意。为此,提出一种基于大模型知识和通道注意力网络的储能变流器功率模组故障诊断方法LLMCAN。首先通过预训练的大规模语言模型,在特征提取过程中利用丰富的领域知识,增强模型对复杂功率模组振动信号的分析能力。其次引入通道注意力网络使模型能够自适应学习信号中不同通道之间的关系,提高故障诊断的准确性。在包含1000条真实工况数据的储能变流器信号数据集上进行验证,其中包括正常工况和9种故障模式。实验结果表明,该方法在多种度量指标下均显示出优越性能,其中诊断准确率高达99.8%,远超传统方法,为储能变流器功率模组的故障诊断提供一个高效、准确的解决方案。 展开更多
关键词 储能变流器 故障诊断 深度学习 注意力机制 信号处理
下载PDF
基于改进主元分析DDPCA的滚动轴承过渡模态早期故障检测方法 被引量:1
14
作者 石怀涛 乔思康 +2 位作者 龙彦泽 蔡圣福 郭瑾 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2024年第2期352-360,共9页
目的 提出一种深度差分主元分析方法用于滚动轴承早期故障检测,解决滚动轴承在运行过程中长期处于变转速等多模态工况,故障特征难以提取和划分的问题。方法 结合差分算法和深度分解原理的分段PCA故障检测方法,使用差分方法对原始数据进... 目的 提出一种深度差分主元分析方法用于滚动轴承早期故障检测,解决滚动轴承在运行过程中长期处于变转速等多模态工况,故障特征难以提取和划分的问题。方法 结合差分算法和深度分解原理的分段PCA故障检测方法,使用差分方法对原始数据进行处理,通过K-means聚类方法将具有相似变量特征的过渡模态数据划分成为相同过渡子模态;结合深度分解理论对每个过渡子模态建立故障检测模型,并通过机械故障综合模拟实验台收集的数据验证模型准确性。结果 随着分解阶数的增加,对过渡模态早期故障检测效果逐渐提升,对滚动轴承过渡子模态的划分越来越清晰,误报的情况也随着分解阶数的增加而逐渐减少;滚动轴承持续减速状态下外圈故障一阶分解检测的漏检率为17.2%,二阶分解检测的漏检率为8.6%,三阶分解检测的漏检率为6.6%。结论 笔者所提方法对过渡子模态进行多层分解,可以准确提取过渡子模态中的故障特征并建立分段检测模型,提高了过渡模态的滚动轴承早期故障检测的准确性。 展开更多
关键词 多模态过程 滚动轴承 早期故障检测 深度主元分析 差分算法
下载PDF
大规模集群硬盘故障预测可迁移性研究
15
作者 胡思源 徐尔茨 +2 位作者 李东升 刘锋 张一鸣 《小型微型计算机系统》 CSCD 北大核心 2024年第2期505-512,共8页
硬盘驱动器(HDD)仍然是大型数据中心与超算中心主要和重要的存储部件,而存储集群规模地持续扩大对硬盘故障预测的研究不断提出挑战.当前,前人已使用统计学、机器学习和深度学习等不同类型的故障预测方法用于大规模存储集群的硬盘故障预... 硬盘驱动器(HDD)仍然是大型数据中心与超算中心主要和重要的存储部件,而存储集群规模地持续扩大对硬盘故障预测的研究不断提出挑战.当前,前人已使用统计学、机器学习和深度学习等不同类型的故障预测方法用于大规模存储集群的硬盘故障预测,并取得不俗的研究结果.但是,对于故障模型的迁移性与数据集差异的相关研究还较少.我们收集了多种类型的HDD数据集与基于不同策略的模型,对其进行交叉实验验证,在模型迁移性、数据集预处理和模型参数方面获得了相关实验结果,例如:数据集在回溯时间与平衡度上的设置显著影响一定程度的预测模型性能,而模型参数设置则并不敏感;模型在不同数据集之间的可迁移性强弱不定,而数据集特征类型和数量的选择更影响预测模型性能. 展开更多
关键词 硬盘故障 故障预测 机器学习与深度学习 迁移性 数据集处理
下载PDF
面向实际化工过程故障诊断的强化深度卷积神经网络模型构建与应用
16
作者 张佳鑫 张淼 +1 位作者 戴一阳 董立春 《化工进展》 EI CAS CSCD 北大核心 2024年第9期4833-4844,共12页
基于数据驱动的故障诊断技术可以帮助操作人员及时有效发现和检测异常情况,是当前工业与大数据融合的热点领域之一。深度卷积神经网络(deep convolutional neural networks,DCNN)是最常用的基于数据驱动的故障诊断模型,但其激活过程存... 基于数据驱动的故障诊断技术可以帮助操作人员及时有效发现和检测异常情况,是当前工业与大数据融合的热点领域之一。深度卷积神经网络(deep convolutional neural networks,DCNN)是最常用的基于数据驱动的故障诊断模型,但其激活过程存在正负值计算不匹配以及信息流通效率低导致的参数冗余问题。本文提出一种基于最大平滑单元(maximum smoothing unit,MSF)函数的新激活机制克服传统激活函数的缺点,并且引入注意力机制(attention mechanism)结合门控循环单元(gated recurrent unit,GRU)提升DCNN的信息流通效率克服参数冗余问题,以综合提升传统DCNN模型的故障诊断性能。强化深度卷积神经网络(enhanced deep convolutional neural networks,EDCNN)的现有模型表现出显著提高的故障诊断性能,这在工业致动器控制系统和工业酸性气体吸收过程中的应用得到了验证。两个过程的平均故障诊断率均超过99.0%。 展开更多
关键词 故障诊断 强化深度卷积神经网络 过程控制 系统工程 激活函数
下载PDF
断层影响下深井工作面底板破坏深度预测
17
作者 王朋朋 许宝卉 +1 位作者 翟江澎 胡旭宇 《运城学院学报》 2024年第3期61-66,共6页
底板破坏深度的预测是底板突水防治研究中的重要一环。为研究断层影响下深井工作面底板采动破坏深度,基于现场实测数据,运用多元线性回归分析方法,构建了断层影响下深井工作面底板破坏深度预测模型,并检验了模型的准确性。通过现场监测... 底板破坏深度的预测是底板突水防治研究中的重要一环。为研究断层影响下深井工作面底板采动破坏深度,基于现场实测数据,运用多元线性回归分析方法,构建了断层影响下深井工作面底板破坏深度预测模型,并检验了模型的准确性。通过现场监测方法,验证了预测模型的合理性。结果表明,与传统的统计公式相比,提出的预测模型相对误差平均值至少降低了25.49%,采用新预测模型预测含断层的工作面底板破坏深度为44.96 m,现场监测底板破坏深度为45.7 m,新预测模型预测值与现场监测基本一致。该预测模型对预测断层影响下深井底板破坏深度和防治底板突水具有一定的实用价值。 展开更多
关键词 断层 深部煤层开采 底板破坏深度 预测模型 现场监测
下载PDF
基于改进格拉姆角场和注意力机制的滚动轴承故障诊断
18
作者 占可 王寅杰 +2 位作者 董路南 范永胜 邓艾东 《轴承》 北大核心 2024年第8期80-85,94,共7页
针对传统的卷积神经网络在噪声环境下特征辨识性差且难以充分挖掘数据信息的问题,提出基于改进的格拉姆角和场(IGASF)和注意力机制的滚动轴承故障诊断模型。首先,根据轴承转速和采样频率计算单个故障周期包含的信号点数,对单个故障周期... 针对传统的卷积神经网络在噪声环境下特征辨识性差且难以充分挖掘数据信息的问题,提出基于改进的格拉姆角和场(IGASF)和注意力机制的滚动轴承故障诊断模型。首先,根据轴承转速和采样频率计算单个故障周期包含的信号点数,对单个故障周期内采集到的振动信号进行分段聚合,利用IGASF进行编码生成相应特征图;然后,将特征图输入卷积神经网络(CNN)进行滚动轴承故障特征提取,并引入注意力模块实现特征的自适应加权;最后,输入到Softmax层完成滚动轴承故障分类。对比试验结果表明,该方法具有更好的抗噪能力和更高的诊断准确率。 展开更多
关键词 滚动轴承 深沟球轴承 故障诊断 信号处理 卷积神经网络
下载PDF
基于多维融合信息处理的电力设备状态识别技术
19
作者 王甦 李磊 《电子设计工程》 2024年第15期128-132,共5页
为了提升电力设备状态的识别精度,文中对多维图像信息融合处理算法进行了研究,并基于图像RGB、HIS之间的转换关系,提出了一种基于ResNet的双通道图像信息融合方法。该方法利用ResNet的跳跃连接机制来保证网络训练时梯度可以快速地从高... 为了提升电力设备状态的识别精度,文中对多维图像信息融合处理算法进行了研究,并基于图像RGB、HIS之间的转换关系,提出了一种基于ResNet的双通道图像信息融合方法。该方法利用ResNet的跳跃连接机制来保证网络训练时梯度可以快速地从高层传递至底层,进而提升了训练速度。通过将融合后的图像输入至深度卷积网络中,实现对电力设备的故障识别。仿真测试结果表明,所提融合算法的IE、AG较PCNN算法分别提高了0.30和3.39,SD及SF相比SIFT增加了3.71与3.20。融合后的图像不仅具有更均匀的灰度分布,层次和细节也更为分明且更接近原图。信息融合后,网络可以提取更多的图像特征,识别精度较未融合的图像提升了4.21%。 展开更多
关键词 ResNet 深度学习 信息融合 图像处理 故障识别
下载PDF
无人机在夜景照明智慧巡检中的应用技术研究
20
作者 王洪水 张丰 +2 位作者 贺洪朝 戴聪棋 刘姝 《照明工程学报》 2024年第5期129-137,共9页
本研究提出了一种基于无人机的智慧巡检技术,针对城市夜景照明中日益增长的故障检测需求。结合无人机的自主飞行与深度学习驱动的图像处理技术,有效提高故障检测的效率和准确性。文章首先分析了夜景照明领域的挑战和无人机技术的应用前... 本研究提出了一种基于无人机的智慧巡检技术,针对城市夜景照明中日益增长的故障检测需求。结合无人机的自主飞行与深度学习驱动的图像处理技术,有效提高故障检测的效率和准确性。文章首先分析了夜景照明领域的挑战和无人机技术的应用前景,然后详细介绍了巡检系统的设计、数据处理流程和故障分析的关键技术。重点讨论了图像融合和目标检测算法及其在实时故障识别中的应用,旨在为夜景照明维护提供创新解决方案,并探索其在城市基础设施维护中的潜在价值。 展开更多
关键词 夜景照明 无人机技术 故障分析 图像处理 深度学习 灯具故障检测
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部