期刊文献+
共找到133,469篇文章
< 1 2 250 >
每页显示 20 50 100
Fault Ride-Through Capability of Full-Power Converter Wind Turbine 被引量:1
1
作者 A.S. Makinen O. Raipala K. Maki S. Repo H. Tuusa 《Journal of Energy and Power Engineering》 2010年第10期29-45,共17页
In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) ... In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault. 展开更多
关键词 Wind turbine (WT) RTDS DSPACE fault ride-through (FRT) loss of mains (LOM) relay generator side converter(GSC) network side converter (NSC).
下载PDF
Validation of Full-Converter Wind Power Plant Generic Model Based on Actual Fault Ride-Through Measurements
2
作者 O. Tsernobrovkin A. Perdana +1 位作者 I. Palu J. Kilter 《Journal of Energy and Power Engineering》 2010年第4期54-62,共9页
Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full powe... Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed. 展开更多
关键词 Real short-circuit test full converter wind turbine modeling model validation generic model fault ride-through (FRT) wind power development security of supply power system stability.
下载PDF
Fault Ride-Through Capability Enhancement of PV System with Voltage Support Control Strategy 被引量:1
3
作者 Dehui Zeng Gang Wang +1 位作者 Guoqing Pan Haifeng Li 《Open Journal of Applied Sciences》 2013年第2期30-34,共5页
With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV sy... With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV system is controlled to keep grid connected, as well as inject reactive current to grid when fault occurs. The mathematical model of PV system is established and the fault characteristic is studied with respect to the control strategy. By analyzing the effect of reactive power supplied by the PV system to the point of common coupling (PCC) voltage, this paper proposes an adaptive voltage support control strategy to enhance the fault ride-through capability of PV system. The control strategy fully utilizes the PV system’s capability of voltage support and takes the safety of equipment into account as well. At last, the proposed control strategy is verified by simulation. 展开更多
关键词 PV System fault ride-through VOLTAGE Support Control Strategy
下载PDF
Fault Ride-Through Study of Wind Turbines
4
作者 Xinyan Zhang Xuan Cao +1 位作者 Weiqing Wang Chao Yun 《Journal of Power and Energy Engineering》 2013年第5期25-29,共5页
The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT ope... The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM. 展开更多
关键词 WIND Energy fault ride-through DOUBLY-FED INDUCTION Generator WIND FARM
下载PDF
Fault Ride-Through(FRT)Behavior in VSC-HVDC as Key Enabler of Transmission Systems Using SCADA Viewer Software
5
作者 Samuel Bimenyimana Chen Wang +9 位作者 Godwin Norense Osarumwense Asemota Aphrodis Nduwamungu Francis Mulolani Jean De Dieu Niyonteze Shilpi Bora Chun-Ling Ho Noel Hagumimana Theobald Habineza Waqar Bashir Yiyi Mo 《Energy Engineering》 EI 2022年第6期2369-2406,共38页
The world’s energy consumption and power generation demand will continue to rise.Furthermore,the bulk of the energy resources needed to satisfy the rising demand is far from the load centers.The aforementioned requir... The world’s energy consumption and power generation demand will continue to rise.Furthermore,the bulk of the energy resources needed to satisfy the rising demand is far from the load centers.The aforementioned requires long-distance transmission systems and one way to accomplish this is to use high voltage direct current(HVDC)transmission systems.The main technical issues for HVDC transmission systems are loss of synchronism,variation of quadrature currents,amplitude,the inability of station 1(rectifier),and station 2(inverter)to either inject,or absorb active,or reactive power in the network in any circumstances(before a fault occurs,during having a fault in network and after a fault cleared),and the variations of power transfer capabilities.Additionally,faults impact power quality such as voltage dips and power line outage time.This paper presents a method of overcoming the aforementioned technical issues using voltage-source converter(VSC)based HVDC transmission systems with SCADA VIEWER software and dynamic grid simulator.The benefits include having a higher capacity transmission system and proposed best method for control of active and reactive power transfer capabilities.Simulation results obtained using MATLAB validated the experimental results from SCADA Viewer software.The results indicate that the station’s rectifier or inverter can either inject or absorb either active power or reactive power in any circumstance.Also,the reverse power flow under different modes of operation can ride through faults.At a 100.0%power transfer rate,the rectifier injected 775.0 W into the network.At a 0.0%power transfer rate,the rectifier injected 164.0 W into the network.At a-100.0%rated power,the rectifier injected 1264.0 W into the network and direction was also changed. 展开更多
关键词 fault ride through capability dynamic grid fault simulator asymmetric components negative sequence control
下载PDF
Power Electronic Interface with Islanding Detection and Unbalanced Fault Ride-through Capability
6
作者 Nguyen Duc Tuyen Goro Fujita +1 位作者 Toshihisa Funabashi Masakatsu Nomurat 《Journal of Energy and Power Engineering》 2012年第11期1816-1825,共10页
Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive p... Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive power injecting into a grid but also implements other importance duties as well. In this study, negative-sequence current injection has been fulfilled in three-phase power electronic interface for two important duties besides injecting reference power into utility grids. The first one is for islanding detection, and the other one is to enhance unbalance-fault ride-through capability of dispersed generation. This paper introduces a mechanism of negative-sequence injection based on controlling two separate coordinates of dq-control and explains the effect of negative-sequence injection in limiting the unbalanced currents generated from a dispersed generation. Using adaptive notch filter as a signal processing unit for the three-phase system, negative-sequence components are observed. The performance of entire control system is evaluated by time domain simulations, PSCAD/EMTDC (power systems computer aided design/electromagnetic transients including DC). 展开更多
关键词 Dispersed generation islanding detection negative-sequence components ride-through.
下载PDF
Application of MMC with Embedded Energy Storage for Overvoltage Suppression and Fault Ride-through Improvement in Series LCCMMC Hybrid HVDC System 被引量:2
7
作者 Xiaodong Li Zheng Xu Zheren Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第3期1001-1013,共13页
The series line-commutated converter(LCC)and modular multilevel converter(MMC)hybrid high-voltage direct current(HVDC)system provides a more economical and flexible alternative for ultra-HVDC(UHVDC)transmission,which ... The series line-commutated converter(LCC)and modular multilevel converter(MMC)hybrid high-voltage direct current(HVDC)system provides a more economical and flexible alternative for ultra-HVDC(UHVDC)transmission,which is the so-called Baihetan-Jiangsu HVDC(BJ-HVDC)project of China.In one LCC and two MMCs(1+2)operation mode,the sub-module(SM)capacitors suffer the most rigorous overvoltage induced by three-phase-to-ground fault at grid-side MMC and valve-side single-phase-to-ground fault in internal MMC.In order to suppress such huge overvoltage,this paper demonstrates a novel alternative by employing the MMC-based embedded battery energy storage system(MMC-BESS).Firstly,the inducements of SM overvoltage are analyzed.Then,coordinated with MMC-BESS,new fault ride-through(FRT)strategies are proposed to suppress the overvoltage and improve the FRT capability.Finally,several simulation scenarios are carried out on PSCAD/EMTDC.The overvoltage suppression is verified against auxiliary device used in the BJ-HVDC project in a monopolar BJ-HVDC system.Further,the proposed FRT strategies are validated in the southern Jiangsu power grid of China based on the planning data in the summer of 2025.Simulation results show that the MMC-BESS and proposed FRT strategies could effectively suppress the overvoltage and improve the FRT capability. 展开更多
关键词 Line-commutated converter(LCC) modular multilevel converter(MMC) MMC-based embedded battery energy storage system(MMC-BESS) fault ride-through(FRT)capability overvoltage suppression
原文传递
A Continuous Fault Ride-through Scheme for DFIGs Under Commutation Failures in LCC-HVDC Transmission Systems 被引量:1
8
作者 Zixuan Zheng Donghui Song +3 位作者 Kaijian Du Xianyong Xiao Jie Ren Qi Xie 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第4期1126-1135,共10页
Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper pr... Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper presents the design and application of an effective scheme for DFIGs when a commutation failure(CF)occurs in a line-commutated converter based high-voltage direct current(LCC-HVDC)transmission system.First,transient demagnetization control without filters is proposed to offset the electromotive force(EMF)induced by the natural flux and other low-frequency flux components.Then,a rotor-side integrated impedance circuit is designed to limit the rotor overcurrent to ensure that the rotor-side converter(RSC)is controllable.Furthermore,coordinated control of the demagnetization and segmented reactive currents is implemented in the RSC.Comparative studies have shown that the proposed scheme can limit rotor fault currents and effectively improve the continuous fault ride-through capability of DFIGs. 展开更多
关键词 Continuous fault commutation failure(CF) doubly-fed induction generator(DFIG) fault ride-through(FRT)capability high-voltage direct current(HVDC)
原文传递
Fault Ride-through Hybrid Controller for MMC-HVDC Transmission System via Switching Control Units Based on Bang-bang Funnel Controller 被引量:1
9
作者 Yang Liu Zehui Lin +1 位作者 Chenying Xu Lei Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期599-610,共12页
This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching ... This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching control units(SCUs).Each SCU switches between a bang-bang funnel controller(BBFC)and proportional-integral(PI)control loop according to a state-dependent switching law.The BBFC can utilize the full control capability of each control loop using three-value control signals with the maximum available magnitude.A state-dependent switching law is designed for each SCU to guarantee its structural stability.Simulation studies are conducted to verify the superior fault ride-through capability of the MMC-HVDC transmission system controlled by FRTHC,in comparison to that controlled by a vector controller(VC)and a VC with DC voltage droop control(VDRC). 展开更多
关键词 Bang-bang funnel controller(BBFC) fault ride-through hybrid controller modular multi-level converter based high-voltage direct-current(MMC-HVDC) switching control unit
原文传递
Dual-mode Switching Fault Ride-through Control Strategy for Self-synchronous Wind Turbines
10
作者 Xinshou Tian Yongning Chi +3 位作者 Peng Cheng Wei He Yunpeng Zhou Jianzhu Hu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期579-588,共10页
The installed capacity of renewable energy generation has continued to grow rapidly in recent years along with the global energy transition towards a 100%renewable-based power system.At the same time,the grid-connecte... The installed capacity of renewable energy generation has continued to grow rapidly in recent years along with the global energy transition towards a 100%renewable-based power system.At the same time,the grid-connected large-scale renewable energy brings significant challenges to the safe and stable operation of the power system due to the loss of synchronous machines.Therefore,self-synchronous wind turbines have attracted wide attention from both academia and industry.However,the understanding of the physical operation mechanisms of self-synchronous wind turbines is not clear.In particular,the transient characteristics and dynamic processes of wind turbines are fuzzy in the presence of grid disturbances.Furthermore,it is difficult to design an adaptive fault ride-through(FRT)control strategy.Thus,a dual-mode switching FRT control strategy for self-synchronous wind turbines is developed.Two FRT control strategies are used.In one strategy,the amplitude and phase of the internal potential are directly calculated according to the voltage drop when a minor grid fault occurs.The other dual-mode switching control strategy in the presence of a deep grid fault includes three parts:vector control during the grid fault,fault recovery vector control,and self-synchronous control.The proposed control strategy can significantly mitigate transient overvoltage,overcurrent,and multifrequency oscillation,thereby resulting in enhanced transient stability.Finally,simulation results are provided to validate the proposed control strategy. 展开更多
关键词 Dual-mode switching self-synchronous wind turbine transient stability fault ride-through(FRT)control
原文传递
Enhanced AC Fault Ride-through Control for MMC-integrated System Based on Active PCC Voltage Drop
11
作者 Haihan Ye Wu Chen +3 位作者 Heng Wu Wu Cao Guoqing He Guanghui Li 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第4期1316-1330,共15页
When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined... When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results. 展开更多
关键词 Modular multilevel converter-based high-voltage direct current(MMC-HVDC)system fault ride-through(FRT) voltage loop saturation continuous power transmission point of common coupling(PCC) active voltage drop control
原文传递
Characterization and spatial analysis of coseismic landslides triggered by the Luding Ms 6.8 earthquake in the Xianshuihe fault zone, Southwest China 被引量:1
12
作者 GUO Changbao LI Caihong +10 位作者 YANG Zhihua NI Jiawei ZHONG Ning WANG Meng YAN Yiqiu SONG Deguang ZHANG Yanan ZHANG Xianbing WU Ruian CAO Shichao SHAO Weiwei 《Journal of Mountain Science》 SCIE CSCD 2024年第1期160-181,共22页
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ... On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area. 展开更多
关键词 Luding earthquake Coseismic landslides Remote sensing interpretation Spatial distribution Xianshuihe fault Earthquake fault
原文传递
Dynamic Vision Enabled Contactless Cross-Domain Machine Fault Diagnosis With Neuromorphic Computing 被引量:1
13
作者 Xinrui Chen Xiang Li +3 位作者 Shupeng Yu Yaguo Lei Naipeng Li Bin Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期788-790,共3页
Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in ... Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision. 展开更多
关键词 fault LESS DIAGNOSIS
下载PDF
Autonomous Recommendation of Fault Detection Algorithms for Spacecraft 被引量:1
14
作者 Wenbo Li Baoling Ning 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期273-275,共3页
Dear Editor, This letter deals with the problem of algorithm recommendation for online fault detection of spacecraft. By transforming the time series data into distributions and introducing a distribution-aware measur... Dear Editor, This letter deals with the problem of algorithm recommendation for online fault detection of spacecraft. By transforming the time series data into distributions and introducing a distribution-aware measure, a principal method is designed for quantifying the detectabilities of fault detection algorithms over special datasets. 展开更多
关键词 fault introducing LETTER
下载PDF
The MW5.5 earthquake on August 6,2023,in Pingyuan,Shandong,China:A rupture on a buried fault 被引量:5
15
作者 Zhe Zhang Lisheng Xu Lihua Fang 《Earthquake Science》 2024年第1期1-12,共12页
On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no act... On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no active fault had been previously identified.This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method,and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion.The relocation and the inversion indicate,the Pingyuan MW5.5 earthquake was caused by a rupture on a buried fault,likely an extensive segment of the Gaotang fault.This buried fault exhibited a dip of approximately 75°to the northwest,with a strike of 222°,similar to the Gaotang fault.The rupture initiated at the depth of 18.6 km and propagated upward and northeastward.However,the ground surface was not broken.The total duration of the rupture was~6.0 s,releasing the scalar moment of 2.5895×1017 N·m,equivalent to MW5.54.The moment rate reached the maximum only 1.4 seconds after the rupture initiation,and the 90%scalar moment was released in the first 4.6 s.In the first 1.4 seconds of the rupture process,the rupture velocity was estimated to be 2.6 km/s,slower than the local S-wave velocity.As the rupture neared its end,the rupture velocity decreased significantly.This study provides valuable insights into the seismic characteristics of the Pingyuan MW5.5 earthquake,shedding light on the previously unidentified buried fault responsible for the seismic activity in the region.Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future. 展开更多
关键词 Shandong Pingyuan MW5.5 earthquake double-difference earthquake location centroid moment tensor inversion buried fault
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
16
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
原文传递
Step-over of strike-slip faults and overpressure fluid favor occurrence of foreshocks:Insights from the 1975 Haicheng fore-main-aftershock sequence,China 被引量:1
17
作者 Xinglin Lei Zhiwei Wang +1 位作者 Shengli Ma Changrong He 《Earthquake Research Advances》 CSCD 2024年第1期36-46,共11页
This study analyzed and summarized in detail the spatial and temporal distributions of earthquakes,tidal responses,focal mechanisms,and stress field characteristics for the M 7.3 Haicheng earthquake sequence in Februa... This study analyzed and summarized in detail the spatial and temporal distributions of earthquakes,tidal responses,focal mechanisms,and stress field characteristics for the M 7.3 Haicheng earthquake sequence in February 1975.The foreshocks are related to the main fault and the conjugate faults surrounding the extension step-over in the middle.The initiation timing of the foreshock clusters and the original time of the mainshock were clearly modulated by the Earth's tidal force and coincided with the peak of dilational volumetric tidal strain.As a plausible and testable hypothesis,we proposed a fluid-driven foreshock model,by which all observed seismicity features can be more reasonably interpreted with respect to the results of existing models.Together with some other known examples,the widely existing step-over along strike-slip faults and associated conjugate faults,especially for extensional ones in the presence of deep fluids,favor the occurrence of short-term foreshocks.Although clustered seismicity with characteristics similar to those of the studied case is not a sufficient and necessary condition for large earthquakes to occur under similar tectonic conditions,it undoubtedly has a warning significance for the criticality of the main fault.Subsequent testing would require quantification of true/false positives/negatives. 展开更多
关键词 Haicheng earthquake Seismogenic fault ETAS FORESHOCK Deep fluid
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
18
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 High-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
Label Recovery and Trajectory Designable Network for Transfer Fault Diagnosis of Machines With Incorrect Annotation 被引量:1
19
作者 Bin Yang Yaguo Lei +2 位作者 Xiang Li Naipeng Li Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期932-945,共14页
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio... The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation. 展开更多
关键词 Deep transfer learning domain adaptation incorrect label annotation intelligent fault diagnosis rotating machines
下载PDF
Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6,2023 Türkiye earthquake doublet 被引量:1
20
作者 Xiaoqing Fan Libao Zhang +2 位作者 Juke Wang Yefei Ren Aiwen Liu 《Earthquake Science》 2024年第1期78-90,共13页
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw... In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized. 展开更多
关键词 Türkiye earthquake fault displacement near-fault ground motion velocity pulse water supply pipeline
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部