Knowledge on the home range size of a species or population is important for understanding its behavioral and social ecology and improving the effectiveness of conservation strategies. We studied the home range size o...Knowledge on the home range size of a species or population is important for understanding its behavioral and social ecology and improving the effectiveness of conservation strategies. We studied the home range size of two different-sized groups of golden snub-nosed monkeys(Rhinopithecus roxellana) in Shennongjia, China. The larger group(236 individuals)had a home range of 22.5 km2 from September2007 to July 2008, whereas the smaller group(62 individuals) occupied a home range of 12.4 km2 from November 2008 to July 2009. Both groups exhibited considerable seasonal variation in their home range size, which was likely due to seasonal changes in food availability and distribution. The home range in any given season(winter, spring, summer, or winter+spring+summer) of the larger group was larger than that of the smaller group. As the two groups were studied in the same area, with the confounding effects of food availability thus minimized, the positive relationship between home range size and group size suggested that scramble feeding competition increased within the larger group.展开更多
Background: In rumen fermentation, fumaric acid(FA) could competitively utilize hydrogen with methanogenesis to enhance propionate production and suppress methane emission, but both effects were diet-dependent. This s...Background: In rumen fermentation, fumaric acid(FA) could competitively utilize hydrogen with methanogenesis to enhance propionate production and suppress methane emission, but both effects were diet-dependent. This study aimed to explore the effects of FA supplementation on methanogenesis and rumen fermentation in goats fed diets varying in forage and concentrate particle size.Methods: Four rumen-cannulated goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments: low or high ratio of forage particle size: concentrate particle size(Fps:Cps), without or with FA supplementation(24 g/d). Fps:Cps was higher in the diet with chopped alfalfa hay plus ground corn than in that with ground alfalfa hay plus crushed corn.Results: Both increasing dietary Fps:Cps and FA supplementation shifted ruminal volatile fatty acid(VFA) patterns toward more propionate and less acetate in goats. An interaction between dietary Fps:Cps and FA supplementation was observed for the ratio of acetate to propionate(A:P), which was more predominant when FA was supplemented in the low-Fps:Cps diet. Methane production was reduced by FA, and the reduction was larger in the low-Fps:Cps diet(31.72%) than in the high-Fps:Cps diet(17.91%). Fumaric acid decreased ruminal total VFA concentration and increased ruminal p H. No difference was found in ruminal DM degradation of concentrate or alfalfa hay by dietary Fps:Cps or FA. Goats presented a lower ruminal methanogen abundance with FA supplementation and a higher B. fibrisolvens abundance with high dietary Fps:Cps.Conclusions: Adjusting dietary Fps:Cps is an alternative dietary model for studying diet-dependent effects without changing dietary chemical composition. Fumaric acid supplementation in the low-Fps:Cps diet showed greater responses in methane mitigation and propionate increase.展开更多
基金supported by the Hubei Provincial Key Laboratory for Conservation Biology of Snub-nosed Monkeys,Scientific Research Grant for Youth Scholars from the University of Chinese Academy of Sciences,L.S.B.Leakey Foundation,and Primate Conservation Inc.
文摘Knowledge on the home range size of a species or population is important for understanding its behavioral and social ecology and improving the effectiveness of conservation strategies. We studied the home range size of two different-sized groups of golden snub-nosed monkeys(Rhinopithecus roxellana) in Shennongjia, China. The larger group(236 individuals)had a home range of 22.5 km2 from September2007 to July 2008, whereas the smaller group(62 individuals) occupied a home range of 12.4 km2 from November 2008 to July 2009. Both groups exhibited considerable seasonal variation in their home range size, which was likely due to seasonal changes in food availability and distribution. The home range in any given season(winter, spring, summer, or winter+spring+summer) of the larger group was larger than that of the smaller group. As the two groups were studied in the same area, with the confounding effects of food availability thus minimized, the positive relationship between home range size and group size suggested that scramble feeding competition increased within the larger group.
基金supported by the National Key Research and Development Program of China(2017YFD0500500)Key Research and Development Program of Shaanxi Province(2017ZDXM-NY-086)
文摘Background: In rumen fermentation, fumaric acid(FA) could competitively utilize hydrogen with methanogenesis to enhance propionate production and suppress methane emission, but both effects were diet-dependent. This study aimed to explore the effects of FA supplementation on methanogenesis and rumen fermentation in goats fed diets varying in forage and concentrate particle size.Methods: Four rumen-cannulated goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments: low or high ratio of forage particle size: concentrate particle size(Fps:Cps), without or with FA supplementation(24 g/d). Fps:Cps was higher in the diet with chopped alfalfa hay plus ground corn than in that with ground alfalfa hay plus crushed corn.Results: Both increasing dietary Fps:Cps and FA supplementation shifted ruminal volatile fatty acid(VFA) patterns toward more propionate and less acetate in goats. An interaction between dietary Fps:Cps and FA supplementation was observed for the ratio of acetate to propionate(A:P), which was more predominant when FA was supplemented in the low-Fps:Cps diet. Methane production was reduced by FA, and the reduction was larger in the low-Fps:Cps diet(31.72%) than in the high-Fps:Cps diet(17.91%). Fumaric acid decreased ruminal total VFA concentration and increased ruminal p H. No difference was found in ruminal DM degradation of concentrate or alfalfa hay by dietary Fps:Cps or FA. Goats presented a lower ruminal methanogen abundance with FA supplementation and a higher B. fibrisolvens abundance with high dietary Fps:Cps.Conclusions: Adjusting dietary Fps:Cps is an alternative dietary model for studying diet-dependent effects without changing dietary chemical composition. Fumaric acid supplementation in the low-Fps:Cps diet showed greater responses in methane mitigation and propionate increase.