In accordance with current problems such as odor pollution,long production period,consumption of a large amount of manpower and so on existing in chicken manure fermentation ,an environment friendly type of chicken ma...In accordance with current problems such as odor pollution,long production period,consumption of a large amount of manpower and so on existing in chicken manure fermentation ,an environment friendly type of chicken manure fermentation device is designed. The key parameters of the equipment are resonance activated tube and fermenting cellar. Resonance activated tube makes the activated water,which could improve obvi- ously the biodegradation rate of chicken manure. The aerator could provide enough oxygen to microbes,and the agitator could make oxygen evenly distributed across the chicken manure in fermenting cellar. The test shows that this equipment is high-efficiency,and only takes 7 days to make the chicken manure achieve the decomposed requirement. The organic matter content of composted chicken manure is 91.2%,C/N ratio is 18.8, MPN is 0.04, mortality of ascarid egg is 99.6% ,concentrations of NH3 and H2 S are 4.20 and 1.58 mg/m3, furthermore ,there is no offensive smell in the fermenting cellar. Therefore,the study can provide a pollution-free, high-efficiency, manpower saving fermentation equipment for organic fertilizer production by chicken manure in agriculture area.展开更多
From 2017 to 2018,the effects of winter planting of milk vetch on yield and partial productivity of nitrogen fertilizer of machine-transplanted double-cropping rice under straw returning were studied in Ningxiang city...From 2017 to 2018,the effects of winter planting of milk vetch on yield and partial productivity of nitrogen fertilizer of machine-transplanted double-cropping rice under straw returning were studied in Ningxiang city,Hunan Province.The results showed that the dry matter accumulation,effective panicle,yield and partial productivity of nitrogen fertilizer in the stem,leaf,panicle and aboveground parts of early and late rice treated with winter planting milk vetch and straw returning were signi ficantly higher than those treated with straw returning only.Among them,the effective panicles of early and late rice increased by 2.58%,3.18%(2017)and 5.22%,6.32%(2018),respectively.Yield increased by 11.85%,10.07%(2017)and 12.42%,10.92%(2018),annual partial productivity of nitrogen fertilizer increased by 10.90%(2017)and 11.66%(2018),respectively.In conclusion,winter planting milk vetch under straw returning is beneficial to increase dry matter accumulation,rice yield and partial productivity of nitrogen fertilizer in mechanized double cropping rice.展开更多
Multiple cropping has been popularized on morethan two thirds of the total area of paddy fields inSouth China.It demands more nutrients due tohigher cropping index.Therefore,how to keepmoderately higher yields of mult...Multiple cropping has been popularized on morethan two thirds of the total area of paddy fields inSouth China.It demands more nutrients due tohigher cropping index.Therefore,how to keepmoderately higher yields of multiple crops and to展开更多
Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Pro...Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Province. The results showed that among the grade-one nutritive elements in soil, organic matter, nitrogen and phosphorus were relatively deficient while potassium was rich. Meanwhile, as the grade-two nutritive elements, calcium oxide and magnesium oxide were relatively short and sulfur’s content was abundant. About the other beneficial and trace nutri-tive elements, iron oxide, manganese, molybdenum and boron were deficient, but the content of chlorine was high, hardly lack. The main barriers to improving land productivity were soil salinization and soil heavy metal contamination. The values of soil integrated fertility index that most of the soil in the study area is middle-lower fertilized. Specifical y, the low fertility area and lower fertility area are 6 1604 and 1 244 km2 respectively, occupying about 97.43% and 1.97% of the total area. The moderate fertility soil has an area of 172 km2, occupying about 0.27% of the total area. The higher fertility soil covers an area of 128 km2, while the high fertility area of only 76 km2. This article proposed scientific fertilization, elimination of soil obsta-cle, remediation of heavy-metal-contaminated soil and other effective measures to improve land productivity according to the basic investigation results, which provides a good technological support for the planning and development of good-quality and high-benefit agriculture.展开更多
[Objective] The aim was to research relationship between SPAD decline index after full-heading stage (SDIFHS) and productivity of rice. fertilized with nitro- gen in order to provide theoretical and practical refere...[Objective] The aim was to research relationship between SPAD decline index after full-heading stage (SDIFHS) and productivity of rice. fertilized with nitro- gen in order to provide theoretical and practical references for selection and breed- ing of rice varieties. [Method] From 2008 to 2010, 18 mid-season hybrid rice vari- eties were researched every year to explore relationship' between SDIFHS and pro- ductivity of rice fertilized with nitrogen. [Result] The productivity of rice fertilized with nitrogen was of extremely significant positive corretation with SDIFHS, because the higher SPAD decline index is, the higher LAI decline index and the transformation ratio of dry matter to spikes in overground plant would be. [Conclusion] The re- search established a new method to predict productivity of rice fertilized with nitro- gen based on SPAD decline index.展开更多
This paper is a distillation of thirty-plus years of experience,experimentation,and observations,gleaned while designing,setting up,nunning,refining,and training people to run indoor vemicomposting systems.The objecti...This paper is a distillation of thirty-plus years of experience,experimentation,and observations,gleaned while designing,setting up,nunning,refining,and training people to run indoor vemicomposting systems.The objectives of this study are to reduce thevolume of food waste going into the waste stream;produce ligh quality organic fertilizer,improve soil heath,reduce waste-haulingcosts;encourage community members to move away from using chemical fertilizers,herbicides,and pesticides,in their gardens.Thishas been,essentially,a long-term,crowd-conducted,wide-ranging.and ongoing experiment.The design of a system is important,butthe way it is run is more important.For some people,prison inmates,for example,leaning to nun a vermicomposting system,can belife-and mind-altering.展开更多
The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive ca...The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P〈0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha^(–1) when SOC stock increased 1 t C ha^(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone.展开更多
The application of fertilizer in agricultural production has become universally common for achieving high crop yields and economic benefits, but it has potential impacts on food safety, energy crisis and environmental...The application of fertilizer in agricultural production has become universally common for achieving high crop yields and economic benefits, but it has potential impacts on food safety, energy crisis and environmental pollution. Optimal management of fertilization is thus necessary for maintaining sustainable agriculture. Two-year(2013–2015) field experiment was conducted, in Yangling(108°24′E, 34°20′N, and 521 m a.s.l.), Shaanxi Province, China, to explore the effects of different nitrogen(N) applications on biomass accumulation, crop N uptake, nitrate N(NO_3~–-N) distribution, yield, and N use with a winter wheat/summer maize rotation system. The N applications consisted of conventional urea(U)(at 80(U80), 160(U160), and 240(U240) kg N ha^(–1); 40% applied as a basal fertilizer and 60% top-dressed at jointing stage) and controlled-release urea(CRU)(at 60(C60), 120(C120), 180(C180), and 240(C240) kg N ha~(^(–1)); all applied as a basal fertilizer) with no N application as a control(CK). The continuous release of N from CRU matched well with the N demands of crop throughout entire growing stages. Soil NO_3~–-N content varied less and peaked shallower in CRU than that in urea treatments. The differences, however, were smaller in winter wheat than that in summer maize seasons. The average yield of summer maize was the highest in C120 in CRU treatments and in U160 in urea treatments, and apparent N use efficiency(NUE) and N agronomic efficiency(NAE) were higher in C120 than in U160 by averages of 22.67 and 41.91%, respectively. The average yield of winter wheat was the highest in C180 in CRU treatments and in U240 in urea treatments with C180 increasing NUE and NAE by averages of 14.89 and 35.62% over U240, respectively. The annual yields under the two N fertilizers were the highest in C120 and U160. The results suggested that CRU as a basal fertilizer once could be a promising alternative of urea as split application in semiarid areas.展开更多
基金Supported by National Table Poultry Industry Technology System ItemChina(CARS-42-G21)+1 种基金Technique Innovation Item of Jinan Colleges and AcademiesChina(201302053)
文摘In accordance with current problems such as odor pollution,long production period,consumption of a large amount of manpower and so on existing in chicken manure fermentation ,an environment friendly type of chicken manure fermentation device is designed. The key parameters of the equipment are resonance activated tube and fermenting cellar. Resonance activated tube makes the activated water,which could improve obvi- ously the biodegradation rate of chicken manure. The aerator could provide enough oxygen to microbes,and the agitator could make oxygen evenly distributed across the chicken manure in fermenting cellar. The test shows that this equipment is high-efficiency,and only takes 7 days to make the chicken manure achieve the decomposed requirement. The organic matter content of composted chicken manure is 91.2%,C/N ratio is 18.8, MPN is 0.04, mortality of ascarid egg is 99.6% ,concentrations of NH3 and H2 S are 4.20 and 1.58 mg/m3, furthermore ,there is no offensive smell in the fermenting cellar. Therefore,the study can provide a pollution-free, high-efficiency, manpower saving fermentation equipment for organic fertilizer production by chicken manure in agriculture area.
文摘From 2017 to 2018,the effects of winter planting of milk vetch on yield and partial productivity of nitrogen fertilizer of machine-transplanted double-cropping rice under straw returning were studied in Ningxiang city,Hunan Province.The results showed that the dry matter accumulation,effective panicle,yield and partial productivity of nitrogen fertilizer in the stem,leaf,panicle and aboveground parts of early and late rice treated with winter planting milk vetch and straw returning were signi ficantly higher than those treated with straw returning only.Among them,the effective panicles of early and late rice increased by 2.58%,3.18%(2017)and 5.22%,6.32%(2018),respectively.Yield increased by 11.85%,10.07%(2017)and 12.42%,10.92%(2018),annual partial productivity of nitrogen fertilizer increased by 10.90%(2017)and 11.66%(2018),respectively.In conclusion,winter planting milk vetch under straw returning is beneficial to increase dry matter accumulation,rice yield and partial productivity of nitrogen fertilizer in mechanized double cropping rice.
文摘Multiple cropping has been popularized on morethan two thirds of the total area of paddy fields inSouth China.It demands more nutrients due tohigher cropping index.Therefore,how to keepmoderately higher yields of multiple crops and to
基金Supported by Multi-goal Geochemical Survey in Laoling-Hekou Regions,Shandong Province of National Soil Survey and Pollution Prevention(GZTR20060104)~~
文摘Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Province. The results showed that among the grade-one nutritive elements in soil, organic matter, nitrogen and phosphorus were relatively deficient while potassium was rich. Meanwhile, as the grade-two nutritive elements, calcium oxide and magnesium oxide were relatively short and sulfur’s content was abundant. About the other beneficial and trace nutri-tive elements, iron oxide, manganese, molybdenum and boron were deficient, but the content of chlorine was high, hardly lack. The main barriers to improving land productivity were soil salinization and soil heavy metal contamination. The values of soil integrated fertility index that most of the soil in the study area is middle-lower fertilized. Specifical y, the low fertility area and lower fertility area are 6 1604 and 1 244 km2 respectively, occupying about 97.43% and 1.97% of the total area. The moderate fertility soil has an area of 172 km2, occupying about 0.27% of the total area. The higher fertility soil covers an area of 128 km2, while the high fertility area of only 76 km2. This article proposed scientific fertilization, elimination of soil obsta-cle, remediation of heavy-metal-contaminated soil and other effective measures to improve land productivity according to the basic investigation results, which provides a good technological support for the planning and development of good-quality and high-benefit agriculture.
基金Supported by Southuest China Rice Innovation System and Crop High-yielding Project by Science and Technology (2011BAD02A05) Transformation Project of Agricultural Fruits into Capitals (2006GB2F000256)+2 种基金Sichuan Academic Leaders Training FundSichuan Rice Cultivation Key ProjectSichuan Financial Distribution Project~~
文摘[Objective] The aim was to research relationship between SPAD decline index after full-heading stage (SDIFHS) and productivity of rice. fertilized with nitro- gen in order to provide theoretical and practical references for selection and breed- ing of rice varieties. [Method] From 2008 to 2010, 18 mid-season hybrid rice vari- eties were researched every year to explore relationship' between SDIFHS and pro- ductivity of rice fertilized with nitrogen. [Result] The productivity of rice fertilized with nitrogen was of extremely significant positive corretation with SDIFHS, because the higher SPAD decline index is, the higher LAI decline index and the transformation ratio of dry matter to spikes in overground plant would be. [Conclusion] The re- search established a new method to predict productivity of rice fertilized with nitro- gen based on SPAD decline index.
文摘This paper is a distillation of thirty-plus years of experience,experimentation,and observations,gleaned while designing,setting up,nunning,refining,and training people to run indoor vemicomposting systems.The objectives of this study are to reduce thevolume of food waste going into the waste stream;produce ligh quality organic fertilizer,improve soil heath,reduce waste-haulingcosts;encourage community members to move away from using chemical fertilizers,herbicides,and pesticides,in their gardens.Thishas been,essentially,a long-term,crowd-conducted,wide-ranging.and ongoing experiment.The design of a system is important,butthe way it is run is more important.For some people,prison inmates,for example,leaning to nun a vermicomposting system,can belife-and mind-altering.
基金supported by the National Basic Research Program of China(973 Program,2011CB100501)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2015BAD22B03)+1 种基金the National High-Tech R&D Program of China(2013AA102901)the Special Fund for Agro-scientific Research in the Public Interest,China(201203077)
文摘The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P〈0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha^(–1) when SOC stock increased 1 t C ha^(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone.
基金financially supported by the National High-Tech R&D Program of China(863 Program,2011AA100504)the Special Fund for Agro-scientific Research in the Public Interest of China(201503105 and 201503125)
文摘The application of fertilizer in agricultural production has become universally common for achieving high crop yields and economic benefits, but it has potential impacts on food safety, energy crisis and environmental pollution. Optimal management of fertilization is thus necessary for maintaining sustainable agriculture. Two-year(2013–2015) field experiment was conducted, in Yangling(108°24′E, 34°20′N, and 521 m a.s.l.), Shaanxi Province, China, to explore the effects of different nitrogen(N) applications on biomass accumulation, crop N uptake, nitrate N(NO_3~–-N) distribution, yield, and N use with a winter wheat/summer maize rotation system. The N applications consisted of conventional urea(U)(at 80(U80), 160(U160), and 240(U240) kg N ha^(–1); 40% applied as a basal fertilizer and 60% top-dressed at jointing stage) and controlled-release urea(CRU)(at 60(C60), 120(C120), 180(C180), and 240(C240) kg N ha~(^(–1)); all applied as a basal fertilizer) with no N application as a control(CK). The continuous release of N from CRU matched well with the N demands of crop throughout entire growing stages. Soil NO_3~–-N content varied less and peaked shallower in CRU than that in urea treatments. The differences, however, were smaller in winter wheat than that in summer maize seasons. The average yield of summer maize was the highest in C120 in CRU treatments and in U160 in urea treatments, and apparent N use efficiency(NUE) and N agronomic efficiency(NAE) were higher in C120 than in U160 by averages of 22.67 and 41.91%, respectively. The average yield of winter wheat was the highest in C180 in CRU treatments and in U240 in urea treatments with C180 increasing NUE and NAE by averages of 14.89 and 35.62% over U240, respectively. The annual yields under the two N fertilizers were the highest in C120 and U160. The results suggested that CRU as a basal fertilizer once could be a promising alternative of urea as split application in semiarid areas.