期刊文献+
共找到202,244篇文章
< 1 2 250 >
每页显示 20 50 100
A new electric field mill array with each of the mill’s rotor controlled precisely by a GPS module:Equipment and initial results
1
作者 Kozo Yamashita Hironobu Fujisaka +4 位作者 DaoHong Wang Hiroyuki Iwasaki Kazuo Yamamoto Koichiro Michimoto Masashi Hayakawa 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期423-435,共13页
We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote... We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array. 展开更多
关键词 LIGHTNING electrostatic field electric field mill electric field change
下载PDF
Strong field ionization of molecules on the surface of nanosystems
2
作者 曲棋文 孙烽豪 +3 位作者 王佳伟 高健 李辉 吴健 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期25-34,共10页
Besides the diverse investigations on the interactions between intense laser fields and molecular systems,extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailore... Besides the diverse investigations on the interactions between intense laser fields and molecular systems,extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailored femtosecond laser fields.Due to the fact that nanostructures hold peculiar effects when illuminated by laser pulses,the underlying mechanisms and the corresponding potential applications can make significant improvements in both fundamental research and development of novel techniques.In this review,we provide a summarization of the strong field ionization occurring on the surface of nanosystems.The molecules attached to the nanoparticle surface perform as the precursor in the ionization and excitation of the whole nanosystem,the fundamental processes of which are yet to be discovered.We discuss the influence on nanoparticle constituents,geometric shapes and sizes,as well as the specific waveforms of the excitation laser fields.The intriguing characteristics observed in surface ion emission reflect how enhanced near field affects the localized ionizations and nanoplasma expansions,thereby paving the way for further precision controls on the light-and-matter interactions in the extreme spatial temporal levels. 展开更多
关键词 NANOPARTICLE femtosecond laser field local field enhancement
原文传递
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
3
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft X-ray Imager
下载PDF
A booming field of large animal model research
4
作者 Xiao-Jiang Li Liangxue Lai 《Zoological Research》 SCIE CSCD 2024年第2期311-313,共3页
Animal models are integral to the study of fundamental biological processes and the etiology of human diseases.Small animal models,especially those involving mice,have yielded abundant and significant insights,greatly... Animal models are integral to the study of fundamental biological processes and the etiology of human diseases.Small animal models,especially those involving mice,have yielded abundant and significant insights,greatly enhancing our understanding of biological phenomena and disease mechanisms. 展开更多
关键词 MECHANISMS INSIGHT field
下载PDF
Phase-field lattice-Boltzmann study on fully coupled thermal-solute-convection dendrite growth of Al-Cu alloy
5
作者 Yin-qi Qiu Meng-wu Wu +1 位作者 Xun-peng Qin Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第2期125-136,共12页
Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al... Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al-Cu alloy.The effect of fully coupled thermal-solute-convection interaction on the dendrite growth was investigated by incorporating a parallel-adaptive mesh refinement algorithm into the numerical model.By accurately reproducing the latent heat release,solute diffusion and convective transport behaviors at the liquidsolid interface,the interaction mechanism among thermal-solute-convection transport as well as their coupling effects on the dendrite growth dynamics were discussed.The simulation results show that the release of latent heat slows down the dendrite growth rate,and both natural and forced convection disrupt the symmetrical growth of dendrites.Their combination makes the growth of dendrites more complex,capturing important physical aspects such as recalescence,dendrite tip splitting,dendrite tilting,dendrite remelting,and solute plume in the simulation case.Based on the robustness and powerful ability of the numerical model,the formation mechanisms of these physical aspects were revealed. 展开更多
关键词 simulation phase field dendrite growth thermal-solute-convection interaction
下载PDF
Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
6
作者 刘滢格 李兴财 +2 位作者 王娟 马鑫 孙文海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期368-378,共11页
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ... High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles. 展开更多
关键词 high-voltage current electric field aerosol particles force characteristic
原文传递
In situ calibrated angle between the quantization axis and the propagating direction of the light field for trapping neutral atoms
7
作者 郭瑞军 何晓东 +7 位作者 盛诚 王坤鹏 许鹏 刘敏 王谨 孙晓红 曾勇 詹明生 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期318-323,共6页
The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique re... The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms. 展开更多
关键词 quantization axis trapping laser ANGLE compensating magnetic fields
原文传递
MULTIPLE INTERSECTIONS OF SPACE-TIME ANISOTROPIC GAUSSIAN FIELDS
8
作者 陈振龙 苑伟杰 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期275-294,共20页
Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X... Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields. 展开更多
关键词 anisotropic Gaussian field multiple intersections Hausdorff measure capacity
下载PDF
Reconstruction of poloidal magnetic field profiles in field-reversed configurations with machine learning in laser-driven ion-beam trace probe
9
作者 徐栩涛 徐田超 +4 位作者 肖池阶 张祖煜 何任川 袁瑞鑫 许平 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期83-87,共5页
The diagnostic of poloidal magnetic field(B_(p))in field-reversed configuration(FRC),promising for achieving efficient plasma confinement due to its highβ,is a huge challenge because B_(p)is small and reverses around... The diagnostic of poloidal magnetic field(B_(p))in field-reversed configuration(FRC),promising for achieving efficient plasma confinement due to its highβ,is a huge challenge because B_(p)is small and reverses around the core region.The laser-driven ion-beam trace probe(LITP)has been proven to diagnose the B_(p)profile in FRCs recently,whereas the existing iterative reconstruction approach cannot handle the measurement errors well.In this work,the machine learning approach,a fast-growing and powerful technology in automation and control,is applied to B_(p)reconstruction in FRCs based on LITP principles and it has a better performance than the previous approach.The machine learning approach achieves a more accurate reconstruction of B_(p)profile when 20%detector errors are considered,15%B_(p)fluctuation is introduced and the size of the detector is remarkably reduced.Therefore,machine learning could be a powerful support for LITP diagnosis of the magnetic field in magnetic confinement fusion devices. 展开更多
关键词 FRC LITP poloidal magnetic field diagnostics machine learning
下载PDF
Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin-Puplett interferometer polarimeter
10
作者 张雅芃 姚嘉文 +2 位作者 刘正东 马作霖 仲佳勇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期129-134,共6页
Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Pup... Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength. 展开更多
关键词 laser-plasma experiment POLARIMETER self-generated magnetic field magnetic reconnection
原文传递
Error field penetration in J-TEXT tokamak based on two-fluid drift-MHD model
11
作者 王文 徐涛 +1 位作者 张仪 the J-TEXT team 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期545-551,共7页
An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and pr... An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature. 展开更多
关键词 plasma responses drift-MHD model error field penetration
原文传递
An Investigation into Forced Convection of a Nanofluid Flowing in a Rectangular Microchannel under the Influence of a Magnetic Field
12
作者 Muataz S.Alhassan Ameer A.Alameri +4 位作者 Andrés Alexis Ramírez-Coronel I.B.Sapaev Azher M.Abed David-Juan Ramos-Huallpartupa Rahman S.Zabibah 《Fluid Dynamics & Materials Processing》 EI 2024年第2期311-323,共13页
In line with recent studies,where it has been shown that nanofluids containing graphene have a stronger capacity to boost the heat transfer coefficient with respect to ordinary nanofluids,experiments have been conducted ... In line with recent studies,where it has been shown that nanofluids containing graphene have a stronger capacity to boost the heat transfer coefficient with respect to ordinary nanofluids,experiments have been conducted using water with cobalt ferrite/graphene nanoparticles.In particular,a circular channel made of copper subjected to a constant heatflux has been considered.As nanoparticles are sensitive to the presence of a magneticfield,different conditions have been examined,allowing both the strength and the frequency of such afield to span relatively wide ranges and assuming different concentrations of nanoparticles.According to thefindings,the addition of nanoparticles to thefluid causes its rotation speed to increase by a factor of two,whereas ultraviolet radiation plays a negligible role.The amount of time required to attain the maximum rotation speed of the nanofluid and the Nusselt number have been measured under both constant and alternating magneticfields for a ferrofluid with a concentration of 0.5%and atflow Reynolds number of 550 and 1750. 展开更多
关键词 Nano fluid rectengular tube magnetic field
下载PDF
Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
13
作者 黄妍 周涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期650-654,共5页
Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pair... Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results. 展开更多
关键词 SUPERCONDUCTIVITY magnetic field induction pairing symmetry Bernal bilayer graphene
原文传递
Comparative study on phase transition behaviors of fractional molecular field theory and random-site Ising model
14
作者 刘婷玉 赵薇 +3 位作者 王涛 安小冬 卫来 黄以能 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期536-541,共6页
Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to ver... Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation. 展开更多
关键词 phase transition molecular field theory Ising model Monte Carlo
原文传递
Effect of Modulus Heterogeneity on the Equilibrium Shape and Stress Field ofαPrecipitate in Ti-6Al-4V
15
作者 Di Qiu Rongpei Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1017-1028,共12页
For media with inclusions(e.g.,precipitates,voids,reinforcements,and others),the difference in lattice parameter and the elastic modulus between the matrix and inclusions cause stress concentration at the interfaces.T... For media with inclusions(e.g.,precipitates,voids,reinforcements,and others),the difference in lattice parameter and the elastic modulus between the matrix and inclusions cause stress concentration at the interfaces.These stress fields depend on the inclusions’size,shape,and distribution and will respond instantly to the evolving microstructure.This study develops a phase-field model concerningmodulus heterogeneity.The effect of modulus heterogeneity on the growth process and equilibrium state of theαplate in Ti-6Al-4V during precipitation is evaluated.Theαprecipitate exhibits strong anisotropy in shape upon cooling due to the interplay of the elastic strain and interfacial energy.The calculated orientation of the habit plane using the homogeneous modulus ofαphase shows the smallest deviation fromthat of the habit plane observed in the experiment,compared to the case where the homogeneous modulus ofβphase is adopted.In addition,the equilibrium volume ofαphase within the systemusing homogeneousβmodulus exhibits the largest dependency on the applied stresses.The stress fields across theα/βinterface are further calculated under the assumption of modulus heterogeneity and compared to those using homogeneous modulus of eitherαorβphase.This study provides an essential theoretical basis for developing mechanics models concerning systems with heterogeneous structures. 展开更多
关键词 Elastic heterogeneity habit plane stress field TITANIUM phase-field simulation
下载PDF
Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
16
作者 张丽萍 孙宗耀 +1 位作者 李佳妮 苏俊燕 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期683-689,共7页
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w... The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions. 展开更多
关键词 graphene field-effect transistors external magnetic field radiation frequency instability increment
原文传递
Numerical Simulation Study of Oil-Water Emulsion Separation in an Ultrasonic Field:Effect of Coupling between Acoustic and Flow Field Parameters
17
作者 Wang Heping Lin Yinchao +2 位作者 Li Yanggui Zhang Xiaohang Wu Yi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期116-125,共10页
In this study,the separation and coalescence of oil-in-water emulsions are explored in an ultrasonic field using the lattice Boltzmann method.By simulating the propagation of ultrasonic waves,this study focuses on exa... In this study,the separation and coalescence of oil-in-water emulsions are explored in an ultrasonic field using the lattice Boltzmann method.By simulating the propagation of ultrasonic waves,this study focuses on examining the effects of acoustic wave frequency,the ratio of oil to water components,and the aspect ratio of the boundary on the emulsification and separation processes of oil-water mixtures.The following conclusions are drawn.①Frequency affects the speed of oil droplet separation,leading to an increase in droplet size over time.Larger droplets are found near the source,while smaller droplets are distributed throughout the wave web.②As the boundary aspect ratio increases,the emulsification efficiency of the droplets weakens,and the system takes longer to stabilize.③Emulsions with a higher component of oil can better resist acoustic waves.④At the same acoustic frequency,longer wavelength ultrasonic fields promote the formation of uniformly distributed,smaller oil droplets,which is beneficial to the storage of emulsions.These numerical simulation results offer insights for optimizing conditions for oil-in-water separation and serve as a numerical reference for the study of oil-in-water emulsion separation in ultrasonic environments. 展开更多
关键词 lattice Boltzmann method phase separation ultrasound field
下载PDF
Accumulation of Heavy Metals in Maga-Pouss Rice Fields (Far-North Region, Cameroon) and Transfer to Rice Grains
18
作者 Diane Madomguia Gilbert Bello Basokdou +3 位作者 Kalieu W. Appoline Isabelle Patrice Kuitekam Dongo Edouard Nya Serge Hubert Zebaze Togouet 《Agricultural Sciences》 2024年第3期311-326,共16页
Monitoring of heavy metals contamination of agricultural products and their transfer and bioaccumulation in crops like rice has become a hot topic worldwide over the last two decades. The present study was carried out... Monitoring of heavy metals contamination of agricultural products and their transfer and bioaccumulation in crops like rice has become a hot topic worldwide over the last two decades. The present study was carried out to determine the accumulation of heavy metals in rice fields and their transfer to rice grains. Soil, irrigation water and rice grains samples were gathered in Maga-Pouss, Far-North, Cameroon. Concentrations of six heavy metals (lead, cadmium, zinc, copper, iron and mercury) were evaluated by Atomic Absorption Spectrophotometer (AAS). Mercury was not detected in this study. Average concentrations of metals were in this order (in mg/kg): Fe (188.60 ± 97.06) > Pb (63.63 ± 7.11) > Cd (2.59 ± 0.29) > Zn (1.10 ± 1.05) > Cu (0.80 ± 0.73) in water and Pb (105.50 ± 31.11) > Fe (105.50 ± 31.11) > Cu (45.93 ± 14.39) > Zn (22.52 ± 6.40) > Cd (3.15 ± 0.49) in soil. Water in Maga-Pouss rice fields appears to be more harmful than the soil, notably for lead, cadmium and copper. In rice grains, heavy metals were found in this order (mg/kg): Fe (188.01 ± 82.62) > Cu (27.20 ± 0.00) > Zn (23.61 ± 12.42) > Pb (19.50 ± 19.91) > Cd (2.02 ± 1.05). The mean bioconcentration factor (BCF) of metals from soil to rice grains was in the following order: Fe (2.60) > Zn (1.05) > Cd (0.64) > Cu (0.59) > Pb (0.18). From water to rice grains, the order is: Cu (37.26) > Zn (22.49) > Cd (6.97) > Pb (2.74) > Fe (1.94). Rice field pH and electrical conductivity favored the uptake of lead, copper and cadmium by rice grains. The findings of this study will be good documentation for risk assessment, and decision-making by environmental managers in this region. 展开更多
关键词 Heavy Metals Rice field Bioconcenration Factor Maga-Pouss ACCUMULATION
下载PDF
The Formation of Oscillation Patterns Based on the Planetary Gravitational Field and Their Suitability for Earthquake Prediction
19
作者 Michael E. Nitsche 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期149-157,共9页
The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form o... The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form oscillation patterns that differ significantly from randomly chosen control groups. These patterns are suitable as an element of an AI for the probability of earthquakes. 展开更多
关键词 Planetary Gravitational field Earthquake Prediction AI
下载PDF
An Interpolation Method for Karhunen-Loève Expansion of Random Field Discretization
20
作者 Zi Han Zhentian Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期245-272,共28页
In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.T... In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.The computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the Fredholm integral eigenvalue problem(IEVP).The paper proposes an interpolation method based on different interpolation basis functions such as moving least squares(MLS),least squares(LS),and finite element method(FEM)to solve the IEVP.Compared with the Galerkin method based on finite element or Legendre polynomials,the main advantage of the interpolation method is that,in the calculation of eigenvalues and eigenfunctions in one-dimensional random fields,the integral matrix containing covariance function only requires a single integral,which is less than a two-folded integral by the Galerkin method.The effectiveness and computational efficiency of the proposed interpolation method are verified through various one-dimensional examples.Furthermore,based on theKL expansion and polynomial chaos expansion,the stochastic analysis of two-dimensional regular and irregular domains is conducted,and the basis function of the extended finite element method(XFEM)is introduced as the interpolation basis function in two-dimensional irregular domains to solve the IEVP. 展开更多
关键词 Random field discretization KL expansion IEVP MLS FEM stochastic analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部