A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted wi...A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted with soil moisture samples taken from 77 nodes of a 10 × 10m2 grid, the soil moisture distribution in the field was structural with a temporal stability. According to the autocorrelation range of the semi-variance function, S sites were selected for the determination of soil water conditions. The characteristic of probability density function of the differences of water storage in two sets of measurements showed that the distribution of these variables in the field was a normal one. The error in the estimation of the average of S random samples was 14% (α = 0.10), and the errors of water consumption by wheat during the experiments were estimated to be 6-13%.Since the experimental field was large enough to avoid any edge effect, the results obtained should tally with the actual situation. Yet the soil system was heterogeneous, so we must follow the principles of statistics and geostatistics when describing the system 's status with the average of the samples.展开更多
Agro-chemical transport processes at different scales are discussed and relevant opening questions areidentified by literature review to make some suggestions concerning the improvement of research methods forfield sc...Agro-chemical transport processes at different scales are discussed and relevant opening questions areidentified by literature review to make some suggestions concerning the improvement of research methods forfield scale solute transport by aid of evaluation of existing models, and examining transport behaviors of solutein vadose zones on different scales. The results indicate that present research progress and understanding onfield scale solute transport have not yet been enough to guarantee the use of our models for the management offield solute movement. Much more research work needs to be done, particularly, in aspects of high resolutionof spatial structures relevant to the hydraulic and transport properties, explicit numerical simulation of actualstructure on field scale and field measurement corroborated with model development.展开更多
The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FL...The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy.展开更多
A brief account of the development of the research on mining earthquakes and the general situation of the Mentougou Coal Mine medium scale experiment field for earthquake prediction and the project of monitor and p...A brief account of the development of the research on mining earthquakes and the general situation of the Mentougou Coal Mine medium scale experiment field for earthquake prediction and the project of monitor and prediction is given. The differences of waveforms between mining earthquakes and natural earthquakes is discussed. The magnitude frequency distribution of the 79 000 mining earthquakes of over M L1.0 from 1984 to 1995 is summarized . Finally, taking PH and PV, the principal compressive stress components of the focal mechanism of the mining earthquakes, as the criteria, analyses the stress background of the 12 large mining earthquakes.展开更多
The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 ...The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 cultivation patterns (conventional plain culture of rice(T1), no-tillage and ridge culture of rice(T2), no-tillage and ridge culture of rice and wheat (T3), and rice-wheat rotation(T4)) were measured with the closed chamber technique in 1996 and 1998 in Chongqing, China. The results showed that differences existed in CH_4 emission from paddy fields under these land management practices. In 1996 and 1998, CH_4 emission was 71 48% and 78 82%(T2), 65 93% and 57 18%(T3), and 61 53% and 34 22%(T4) of that in T1 during the rice growing season. During the non-rice growing season, CH_4 emission from rice fields was 76 23% in T2 and 38 69% in T1 The accumulated annual CH_4 emission in T2, T3 and T4 in 1996 decreased by 33 53%, 63 30% and 65 73%, respectively, as compared with that in T1 In 1998, the accumulated annual CH_4 emission in T1, T2, T3 and T4 was 116 96 g/m^2, 68 44 g/m^2, 19 70 g/m^2 and 11 80 g/m^2, respectively. Changes in soil physical and chemical properties, in thermal and moisture conditions in the soil and in rice plant growth induced by different land use patterns were the dominant causes for the difference in CH_4 emission observed. The relative contribution of various influencing factors to CH_4 emission from paddy fields differed significantly under different land use patterns. However, the general trend was that chlorophyll content in rice leaves, air temperature and temperature at the 5 cm soil layer play a major role in CH_4 emission from paddy fields and the effects of illumination, relative humidity and water layer depth in the paddy field and CH_4 concentration in the crop canopy were relatively non-significant. Such conservative land use patterns as no-tillage and ridge culture of rice with or without rotation with wheat are thought to be beneficial to reducing CH_4 emission from paddy fields and are, therefore, recommended as a significant solution to the problems of global(climatic) change.展开更多
By applying man-machine-environment system engineering theory, safety risks on large scale field operation project have been evaluated in this article. The factors concerning with the man, machine and environment in s...By applying man-machine-environment system engineering theory, safety risks on large scale field operation project have been evaluated in this article. The factors concerning with the man, machine and environment in system were proposed separately. The value for lowest indexs was determined by decision-making of expert group. The weights were calculated based on AHP, and then safety risk assessment in different layers was made. The results show that the assessment method is reasonable, and it is significant for large scale field operation project safety managerment.展开更多
A small scale field experiment (SSFE) was performed on vertical breakwaters in the surf zone. The following are some of the findings. Wind seas may yield breaking wave pressure notwithstanding some large deepwater wav...A small scale field experiment (SSFE) was performed on vertical breakwaters in the surf zone. The following are some of the findings. Wind seas may yield breaking wave pressure notwithstanding some large deepwater wave steepness, and small elevation of the wall above the mean water level. Caisson breakwaters can withstand some exceptionally high impulsive force peaks (even twice the weight in still water);whereas, with the same sea state and weight, a breakwater composed of layers of solid concrete blocks is destroyed.展开更多
This is an attempt to view the concept of quantization of Geometry in a very different way from the prevailing views on the subject. It is postulated that the quantum levels of geometry form a geometric progression (l...This is an attempt to view the concept of quantization of Geometry in a very different way from the prevailing views on the subject. It is postulated that the quantum levels of geometry form a geometric progression (like a, ax, ax2, ax3, ax4, ···, axn) where the scale factor “a” stands for lP/2 (lP= 1.616199 × 10-35 m is the Planck’s length) and the common ratio “x” stands for . Based on observational facts, it is further attempted to establish that the Geometric Quantum levels could be grouped into different scales, namely, pre-atomic scale, atomic scale, cosmic scale, super-cos-mic scale, etc., with the accompanying force fields. It is further postulated that detection of any super cosmic structure with a length or diameter of the order of magnitude of 20 Billion Light Years would mean that a super-cosmic scale is present beyond the observable Universe. This paper just describes a proposed theoretical framework which could ultimately explain all the observable phenomena, in the Universe, without venturing into a detailed mathematical study to support the theory.展开更多
The general idea in this paper is to study curves of the parametric equations where the parameter varies in a so-called time scale, which may be an arbitrary closed subset of the set of all real numbers. We introduce ...The general idea in this paper is to study curves of the parametric equations where the parameter varies in a so-called time scale, which may be an arbitrary closed subset of the set of all real numbers. We introduce the directional derivative according to the vector fields.展开更多
Guanting Reservoir, one of the drinking water supply sources of Beijing, suffers from water eutrophication. It is mainly supplied by Guishui River. Thus, to investigate the reasons of phosphorus (P) loss and improve...Guanting Reservoir, one of the drinking water supply sources of Beijing, suffers from water eutrophication. It is mainly supplied by Guishui River. Thus, to investigate the reasons of phosphorus (P) loss and improve the P management strategies in Guishui River watershed are important for the safety of drinking water in this region. In this study, a Revised Field P Ranking Scheme (PRS) was developed to reflect the field vulnerability of P loss at the field scale based on the Field PRS. In this new scheme, six factors are included, and each one was assigned a relative weight and a determination method. The affecting factors were classified into transport factors and source factors, and, the standards of environmental quality on surface water and soil erosion classification and degradation of the China were used in this scheme. By the new scheme, thirty-four fields in the Guishui River were categorized as "low", "medium" or "high" potential for P loss into the runoff. The results showed that the P loss risks of orchard and vegetable fields were higher than that of corn and soybean fields. The source factors were the main factors to affect P loss from the study area. In the study area, controlling P input and improving P usage efficiency are critical to decrease P loss. Based on the results, it was suggested that more attention should be paid on the fields of vegetable and orchard since they have extremely high usage rate of P and high soil test of P. Compared with P surplus by field measurements, the Revised Field PRS was more suitable for reflecting the characteristics of fields, and had higher potential capacity to identify critical source areas of P loss than PRS.展开更多
文摘A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted with soil moisture samples taken from 77 nodes of a 10 × 10m2 grid, the soil moisture distribution in the field was structural with a temporal stability. According to the autocorrelation range of the semi-variance function, S sites were selected for the determination of soil water conditions. The characteristic of probability density function of the differences of water storage in two sets of measurements showed that the distribution of these variables in the field was a normal one. The error in the estimation of the average of S random samples was 14% (α = 0.10), and the errors of water consumption by wheat during the experiments were estimated to be 6-13%.Since the experimental field was large enough to avoid any edge effect, the results obtained should tally with the actual situation. Yet the soil system was heterogeneous, so we must follow the principles of statistics and geostatistics when describing the system 's status with the average of the samples.
文摘Agro-chemical transport processes at different scales are discussed and relevant opening questions areidentified by literature review to make some suggestions concerning the improvement of research methods forfield scale solute transport by aid of evaluation of existing models, and examining transport behaviors of solutein vadose zones on different scales. The results indicate that present research progress and understanding onfield scale solute transport have not yet been enough to guarantee the use of our models for the management offield solute movement. Much more research work needs to be done, particularly, in aspects of high resolutionof spatial structures relevant to the hydraulic and transport properties, explicit numerical simulation of actualstructure on field scale and field measurement corroborated with model development.
基金supported by the National Natural Science Foundation of China(40805004, 40705039 and 90715031)the "Mini-projecton detailed survey and evaluation of wind energy resources"supported by National Climate Center of Chinese Meteoro-logical Administration (CWERA2010002)
文摘The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy.
文摘A brief account of the development of the research on mining earthquakes and the general situation of the Mentougou Coal Mine medium scale experiment field for earthquake prediction and the project of monitor and prediction is given. The differences of waveforms between mining earthquakes and natural earthquakes is discussed. The magnitude frequency distribution of the 79 000 mining earthquakes of over M L1.0 from 1984 to 1995 is summarized . Finally, taking PH and PV, the principal compressive stress components of the focal mechanism of the mining earthquakes, as the criteria, analyses the stress background of the 12 large mining earthquakes.
文摘The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 cultivation patterns (conventional plain culture of rice(T1), no-tillage and ridge culture of rice(T2), no-tillage and ridge culture of rice and wheat (T3), and rice-wheat rotation(T4)) were measured with the closed chamber technique in 1996 and 1998 in Chongqing, China. The results showed that differences existed in CH_4 emission from paddy fields under these land management practices. In 1996 and 1998, CH_4 emission was 71 48% and 78 82%(T2), 65 93% and 57 18%(T3), and 61 53% and 34 22%(T4) of that in T1 during the rice growing season. During the non-rice growing season, CH_4 emission from rice fields was 76 23% in T2 and 38 69% in T1 The accumulated annual CH_4 emission in T2, T3 and T4 in 1996 decreased by 33 53%, 63 30% and 65 73%, respectively, as compared with that in T1 In 1998, the accumulated annual CH_4 emission in T1, T2, T3 and T4 was 116 96 g/m^2, 68 44 g/m^2, 19 70 g/m^2 and 11 80 g/m^2, respectively. Changes in soil physical and chemical properties, in thermal and moisture conditions in the soil and in rice plant growth induced by different land use patterns were the dominant causes for the difference in CH_4 emission observed. The relative contribution of various influencing factors to CH_4 emission from paddy fields differed significantly under different land use patterns. However, the general trend was that chlorophyll content in rice leaves, air temperature and temperature at the 5 cm soil layer play a major role in CH_4 emission from paddy fields and the effects of illumination, relative humidity and water layer depth in the paddy field and CH_4 concentration in the crop canopy were relatively non-significant. Such conservative land use patterns as no-tillage and ridge culture of rice with or without rotation with wheat are thought to be beneficial to reducing CH_4 emission from paddy fields and are, therefore, recommended as a significant solution to the problems of global(climatic) change.
基金supported by the National Natural Science Foundation of China(71172124,71201124)Projects of the National Social Science Foundation of China(15GJ003-245)Science Foundation for The Youth Scholars of Xi'an Institute of High Technology and Science(2015QNJJ011)
文摘By applying man-machine-environment system engineering theory, safety risks on large scale field operation project have been evaluated in this article. The factors concerning with the man, machine and environment in system were proposed separately. The value for lowest indexs was determined by decision-making of expert group. The weights were calculated based on AHP, and then safety risk assessment in different layers was made. The results show that the assessment method is reasonable, and it is significant for large scale field operation project safety managerment.
文摘A small scale field experiment (SSFE) was performed on vertical breakwaters in the surf zone. The following are some of the findings. Wind seas may yield breaking wave pressure notwithstanding some large deepwater wave steepness, and small elevation of the wall above the mean water level. Caisson breakwaters can withstand some exceptionally high impulsive force peaks (even twice the weight in still water);whereas, with the same sea state and weight, a breakwater composed of layers of solid concrete blocks is destroyed.
文摘This is an attempt to view the concept of quantization of Geometry in a very different way from the prevailing views on the subject. It is postulated that the quantum levels of geometry form a geometric progression (like a, ax, ax2, ax3, ax4, ···, axn) where the scale factor “a” stands for lP/2 (lP= 1.616199 × 10-35 m is the Planck’s length) and the common ratio “x” stands for . Based on observational facts, it is further attempted to establish that the Geometric Quantum levels could be grouped into different scales, namely, pre-atomic scale, atomic scale, cosmic scale, super-cos-mic scale, etc., with the accompanying force fields. It is further postulated that detection of any super cosmic structure with a length or diameter of the order of magnitude of 20 Billion Light Years would mean that a super-cosmic scale is present beyond the observable Universe. This paper just describes a proposed theoretical framework which could ultimately explain all the observable phenomena, in the Universe, without venturing into a detailed mathematical study to support the theory.
文摘The general idea in this paper is to study curves of the parametric equations where the parameter varies in a so-called time scale, which may be an arbitrary closed subset of the set of all real numbers. We introduce the directional derivative according to the vector fields.
基金Project supported by the National Basic Research Program of China(No.2005CB121107)the Innovation Research Group of National Basic Research Program of China(No.2005).
文摘Guanting Reservoir, one of the drinking water supply sources of Beijing, suffers from water eutrophication. It is mainly supplied by Guishui River. Thus, to investigate the reasons of phosphorus (P) loss and improve the P management strategies in Guishui River watershed are important for the safety of drinking water in this region. In this study, a Revised Field P Ranking Scheme (PRS) was developed to reflect the field vulnerability of P loss at the field scale based on the Field PRS. In this new scheme, six factors are included, and each one was assigned a relative weight and a determination method. The affecting factors were classified into transport factors and source factors, and, the standards of environmental quality on surface water and soil erosion classification and degradation of the China were used in this scheme. By the new scheme, thirty-four fields in the Guishui River were categorized as "low", "medium" or "high" potential for P loss into the runoff. The results showed that the P loss risks of orchard and vegetable fields were higher than that of corn and soybean fields. The source factors were the main factors to affect P loss from the study area. In the study area, controlling P input and improving P usage efficiency are critical to decrease P loss. Based on the results, it was suggested that more attention should be paid on the fields of vegetable and orchard since they have extremely high usage rate of P and high soil test of P. Compared with P surplus by field measurements, the Revised Field PRS was more suitable for reflecting the characteristics of fields, and had higher potential capacity to identify critical source areas of P loss than PRS.