The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured a...The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.展开更多
Power electronic devices are of great importance in modern society.After decades of development,Si power devices have approached their material limits with only incremental improvements and large conversion losses.As ...Power electronic devices are of great importance in modern society.After decades of development,Si power devices have approached their material limits with only incremental improvements and large conversion losses.As the demand for electronic components with high efficiency dramatically increasing,new materials are needed for power device fabrication.Betaphase gallium oxide,an ultra-wide bandgap semiconductor,has been considered as a promising candidate,and variousβ-Ga_(2)O_(3)power devices with high breakdown voltages have been demonstrated.However,the realization of enhancement-mode(E-mode)β-Ga_(2)O_(3)field-effect transistors(FETs)is still challenging,which is a critical problem for a myriad of power electronic applications.Recently,researchers have made some progress on E-modeβ-Ga_(2)O_(3)FETs via various methods,and several novel structures have been fabricated.This article gives a review of the material growth,devices and properties of these E-modeβ-Ga_(2)O_(3)FETs.The key challenges and future directions in E-modeβ-Ga_(2)O_(3)FETs are also discussed.展开更多
A NiO/β-Ga_(2)O_(3) heterojunction-gate field effect transistor(HJ-FET)is fabricated and it_(s)instability mechanisms are exper-imentally investigated under different gate stress voltage(V_(G,s))and stress times(t_(s...A NiO/β-Ga_(2)O_(3) heterojunction-gate field effect transistor(HJ-FET)is fabricated and it_(s)instability mechanisms are exper-imentally investigated under different gate stress voltage(V_(G,s))and stress times(t_(s)).Two different degradation mechanisms of the devices under negative bias stress(NBS)are identified.At low V_(G,s)for a short t_(s),NiO bulk traps trapping/de-trapping elec-trons are responsible for decrease/recovery of the leakage current,respectively.At higher V_(G,s)or long t_(s),the device transfer char-acteristic curves and threshold voltage(V_(TH))are almost permanently negatively shifted.This is because the interface dipoles are almost permanently ionized and neutralize the ionized charges in the space charge region(SCR)across the heterojunction inter-face,resulting in a narrowing SCR.This provides an important theoretical guide to study the reliability of NiO/β-Ga_(2)O_(3) hetero-junction devices in power electronic applications.展开更多
二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方...二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方法。本文开展了氧等离子体对二硫化钼(MoS_(2))掺杂特性的研究。首先,测试了MoS_(2)场效应晶体管(field-effect transistor,FET)的输运特性,发现氧等离子体处理对FET具有p型掺杂作用。随后,通过拉曼光谱研究了掺杂机制的成因,并证实了沟道表面类MoO_(3)缺陷的形成。最后,研究了经等离子体处理的晶体管的湿度传感特性,由于氧等离子体处理使得沟道对水分子的吸收中心增加,在潮湿环境下晶体管具有十分灵敏的响应特性,源漏电流值变化了约54%。这项工作不仅提供了一种调控TMD电学性能的简单方法,也展示了低维材料化学传感器的发展潜力。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12035019,12105339,and62174180)the Opening Special Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,China(Grant No.SKLIPR2113)。
文摘The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.
基金supported in part by the National Basic Research Program of China(Grant No.2021YFB3600202)Key Laboratory Construction Project of Nanchang(Grant No.2020-NCZDSY-008)the Suzhou Science and Technology Foundation(Grant No.SYG202027)。
文摘Power electronic devices are of great importance in modern society.After decades of development,Si power devices have approached their material limits with only incremental improvements and large conversion losses.As the demand for electronic components with high efficiency dramatically increasing,new materials are needed for power device fabrication.Betaphase gallium oxide,an ultra-wide bandgap semiconductor,has been considered as a promising candidate,and variousβ-Ga_(2)O_(3)power devices with high breakdown voltages have been demonstrated.However,the realization of enhancement-mode(E-mode)β-Ga_(2)O_(3)field-effect transistors(FETs)is still challenging,which is a critical problem for a myriad of power electronic applications.Recently,researchers have made some progress on E-modeβ-Ga_(2)O_(3)FETs via various methods,and several novel structures have been fabricated.This article gives a review of the material growth,devices and properties of these E-modeβ-Ga_(2)O_(3)FETs.The key challenges and future directions in E-modeβ-Ga_(2)O_(3)FETs are also discussed.
基金supported by the Fundamental Strengthening Program Key Basic Research Project(Grant No.2021-173ZD-057).
文摘A NiO/β-Ga_(2)O_(3) heterojunction-gate field effect transistor(HJ-FET)is fabricated and it_(s)instability mechanisms are exper-imentally investigated under different gate stress voltage(V_(G,s))and stress times(t_(s)).Two different degradation mechanisms of the devices under negative bias stress(NBS)are identified.At low V_(G,s)for a short t_(s),NiO bulk traps trapping/de-trapping elec-trons are responsible for decrease/recovery of the leakage current,respectively.At higher V_(G,s)or long t_(s),the device transfer char-acteristic curves and threshold voltage(V_(TH))are almost permanently negatively shifted.This is because the interface dipoles are almost permanently ionized and neutralize the ionized charges in the space charge region(SCR)across the heterojunction inter-face,resulting in a narrowing SCR.This provides an important theoretical guide to study the reliability of NiO/β-Ga_(2)O_(3) hetero-junction devices in power electronic applications.
基金National Natural Science Foundation of China(No.62005042)。
文摘二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方法。本文开展了氧等离子体对二硫化钼(MoS_(2))掺杂特性的研究。首先,测试了MoS_(2)场效应晶体管(field-effect transistor,FET)的输运特性,发现氧等离子体处理对FET具有p型掺杂作用。随后,通过拉曼光谱研究了掺杂机制的成因,并证实了沟道表面类MoO_(3)缺陷的形成。最后,研究了经等离子体处理的晶体管的湿度传感特性,由于氧等离子体处理使得沟道对水分子的吸收中心增加,在潮湿环境下晶体管具有十分灵敏的响应特性,源漏电流值变化了约54%。这项工作不仅提供了一种调控TMD电学性能的简单方法,也展示了低维材料化学传感器的发展潜力。