The global prevalence of infectious diseases has emerged as a significant challenge in recent years.Surface transmission is a potential transmission route of most gastrointestinal and respiratory infectious diseases,w...The global prevalence of infectious diseases has emerged as a significant challenge in recent years.Surface transmission is a potential transmission route of most gastrointestinal and respiratory infectious diseases,which is related to surface touch behaviors.Manual observation,the traditional method of surface touching data collection,is characterized by limited accuracy and high labor costs.In this work,we proposed a methodology based on machine learning technologies aimed at obtaining high-accuracy and low-labor-cost surface touch behavioral data by means of sensor-based contact data.The touch sensing device,primarily utilizing a film pressure sensor and Arduino board,is designed to automatically detect and collect surface contact data,encompassing pressure,duration and position.To make certain the surface touch behavior and to describe the behavioral data more accurately,six classification algorithms(e.g.Support Vector Machine and Random Forest)have been trained and tested on an experimentally available dataset containing more than 500 surface contacts.The classification results reported the accuracy of above 85%for all the six classifiers and indicated that Random Forest performed best in identifying surface touch behaviors,with 91.8%accuracy,91.9%precision and 0.98 AUC.The study conclusively demonstrated the feasibility of identifying surface touch behaviors through film pressure sensor-based data,offering robust support for the calculation of viral load and exposure risk associated with surface transmission.展开更多
Transparent conducting oxide film of molybdenum-doped zinc oxide (MZO) with high transparency and relatively low resistivity was prepared by RF (radio frequency) magnetron sputtering at room temperature. The struc...Transparent conducting oxide film of molybdenum-doped zinc oxide (MZO) with high transparency and relatively low resistivity was prepared by RF (radio frequency) magnetron sputtering at room temperature. The structural, electrical, and optical properties of the films deposited under different Ar pressure were investigated.XRD (X-ray diffraction) patterns show that the nature of the films is polycrystalline with a hexagonal structure and a preferred orientation along the c-axis. The resistivity increases as Ar pressure increases. The lowest range exceeds 88% for all the samples. The optical band gap decreases from 3.27 to 3.15 eV with increasing Ar pressure from 0.6 to 3.0 Pa.展开更多
Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well a...Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.展开更多
Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the s...Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the substrate is heated to 300 C, hard hydrogenated amorphous carbon film is deposited. From the IR deconvolution analysis of the C-H stretching absorption for the coating, the hydrocarbon group ration (CH3:CH2:CH) and C-C bond type ratio (sp3c/sp2c) are about 10%: 21%: 69% and 3:1~6:1,respectively. Their Knoop hardness is up to 10Gpa. No film isdeposited when the content of methane in the mixed gases is decreased to 5% at 300 C silicon substrate.展开更多
To understand the engine main bearings' working condition is important in order to improve the performance of engine. However, thermal effects and thermal effect deformations of engine main bearings are rarely consid...To understand the engine main bearings' working condition is important in order to improve the performance of engine. However, thermal effects and thermal effect deformations of engine main bearings are rarely considered simultaneously in most studies. A typical finite element model is selected and the effect of thermoelastohydrodynamic(TEHD) reaction on engine main bearings is investigated. The calculated method of main bearing's thermal hydrodynamic reaction and journal misalignment effect is finite difference method, and its deformation reaction is calculated by using finite element method. The oil film pressure is solved numerically with Reynolds boundary conditions when various bearing characteristics are calculated. The whole model considers a temperature-pressure-viscosity relationship for the lubricant, surface roughness effect, and also an angular misalignment between the journal and the bearing. Numerical simulations of operation of a typical I6 diesel engine main bearing is conducted and importance of several contributing factors in mixed lubrication is discussed. The performance characteristics of journal misaligned main bearings under elastohydrodynamic(EHD) and TEHD loads of an I6 diesel engine are received, and then the journal center orbit movement, minimum oil film thickness and maximum oil film pressure of main bearings are estimated over a wide range of engine operation. The model is verified through the comparison with other present models. The TEHD performance of engine main bearings with various effects under the influences of journal misalignment is revealed, this is helpful to understand EHD and TEHD effect of misaligned engine main bearings.展开更多
Observation of fatigue crack initiation and propagation during fatigue test in ALSn20Cu bearing has been presented. Journal center orbit, oil film pressure and stress distribution in alloy layer have been calculated a...Observation of fatigue crack initiation and propagation during fatigue test in ALSn20Cu bearing has been presented. Journal center orbit, oil film pressure and stress distribution in alloy layer have been calculated and are taken as the basis for theoretically simulating the bearing fatigue process. It is found that the calculated results are in good accordance with the experimental results, which provides a feasible way for investigation of fatigue crack propagation process in the bearing.展开更多
The acid number of the mixed solution of 150SN oil and oleic acid characterizes the volume content of oleic acid in the solution, based on which the adsorptive capability of oleic acid is studied on the 45 steel balls...The acid number of the mixed solution of 150SN oil and oleic acid characterizes the volume content of oleic acid in the solution, based on which the adsorptive capability of oleic acid is studied on the 45 steel balls and disks. Boundary lubrication tests are carried out on a self designed ball-on-disk machine, The base oil is pure 150SN oil, and oleic acid as additive are added into the lubricant. Disks have surface roughness values (Ra) of 0.8 μn and 0.4 μn. The electrical contact resistance method is used to determine the lubrication status. Hypothesize that the molecular film is monomolecular layer in condensed state and the opposing surfaces are completely separated by molecular film. A boundary lubrication model is established according to experimental results and hypothesizes. The experimental and calculatienal results show that the adsorption of polar molecules on steel surface is the main factor to form the boundary lubrication film. Load and sliding speed contribute little to the friction coefficient of boundary lubrication. The properties of steel surface and additive for the lubricant significantly influence on the characters of boundary lubrication. The smaller the surface roughness value is, the smaller the friction coefficient of the boundary lubrication is.展开更多
Lubrication in cold rolling process is used not only to control friction,but also to control surface quality and thermal chamber.Successful cold rolling of strip at high speeds requires an optimum presence of lubrican...Lubrication in cold rolling process is used not only to control friction,but also to control surface quality and thermal chamber.Successful cold rolling of strip at high speeds requires an optimum presence of lubricant film thickness at the contact.In order to have a better control on rolling process the awareness for the prediction and maintenance of desired minimum film thickness.On the basis of learning and summarizing the theories early founded by experts around the world,this paper constructed the mixed lubrication model. This paper investigated the lubrication state variation caused by oil and rolling condition differences by cold rolling experiments.The experiments indicated that oil has a big influence to rolling process,and rolling speed directly influence the lubrication state.展开更多
BACKGROUND In rotator cuff repair surgery,the double-row technique is widely performed.Studies have shown that with increased contact area and pressure between tendon and bone interface,better healing is promoted.AIM ...BACKGROUND In rotator cuff repair surgery,the double-row technique is widely performed.Studies have shown that with increased contact area and pressure between tendon and bone interface,better healing is promoted.AIM To assess the different suture configurations with the double-row technique and how this influences the contact area of the rotator cuff tendon to bone.METHODS This was a controlled laboratory study where identical tears were created in 24 fresh porcine shoulders over a 1.5 cm×2.5 cm infraspinatus insertion footprint.Double-row repair techniques,with 3 to 4-suture anchors in different configurations(2 medial,2 lateral vs 2 medial,1 lateral vs 1 medial,2 lateral),were employed for three control groups.Each group consisted of eight shoulders with identical repair configurations.Footprint contact areas of the repaired tendon against the tuberosity were determined using pressure sensitive Fujifilm placed between the tendon and tuberosity.RESULTS The mean contact area between tendon and insertion footprint from the imprinted Fujifilm was obtained using computer software.The contact area measured from a standard 4-suture anchor double row repair was 75.1±9.3 mm2,whereas areas obtained for the 2 lateral-1 medial and 2 medial-1 lateral anchor configurations were 72.9±5.2 mm2 and 75.0±4.9 mm2 respectively.No statistical significance was noted between the three groups.CONCLUSION In the technique of double-row repair,using a 3-suture anchor configuration may offer a non-inferior alternative to the standard 4-anchor construct in terms of efficacy.This may also result in overall cost reduction and shorter surgical time.展开更多
The Tb40(Fe49Co49V2)60 films were fabricated by magnetron cosputtering from a multiple target arrangement at different argon pressures.The samples were investigated using X-ray diffraction,magnetic force microscope ...The Tb40(Fe49Co49V2)60 films were fabricated by magnetron cosputtering from a multiple target arrangement at different argon pressures.The samples were investigated using X-ray diffraction,magnetic force microscope and vibrating sample magnetometer.A strong perpendicular anisotropy was obtained for the sample prepared at 0.4 Pa.The easy direction of magnetization could be turned from perpendicular to in-plane direction either at high working pressures(P Ar >2.0 Pa) or by annealing at temperatures higher than 250 °C.An excellent magnetic softness with coercivity below 3 mT and saturating field of 20 mT in film-plane direction was obtained for the sample prepared at 0.7 Pa and then annealed at 350 °C.展开更多
Atomically thin MoS2 films have attracted significant attention due to excellent electrical and optical properties.The development of device applications demands the production of large-area thin film which is still a...Atomically thin MoS2 films have attracted significant attention due to excellent electrical and optical properties.The development of device applications demands the production of large-area thin film which is still an obstacle.In this work we developed a facile method to directly grow large-area MoS2 thin film on Si O2 substrate via ambient pressure chemical vapor deposition method. The characterizations by spectroscopy and electron microscopy reveal that the as-grown MoS2 film is mainly bilayer and trilayer with high quality. Back-gate field-effect transistor based on such MoS2 thin film shows carrier mobility up to 3.4 cm2V-1s-1 and on/off ratio of 105. The large-area atomically thin MoS2 prepared in this work has the potential for wide optoelectronic and photonic device applications.展开更多
A lateral photovoltaic effect (LPE) is discovered in an LaTiO3+8 film epitaxially grown on a (100) SrTiO3 substrate. Under the illumination of a continuous 808 nm laser beam that is focused on the LaTiO3+δ film...A lateral photovoltaic effect (LPE) is discovered in an LaTiO3+8 film epitaxially grown on a (100) SrTiO3 substrate. Under the illumination of a continuous 808 nm laser beam that is focused on the LaTiO3+δ film through the SrTiO3 substrate, the open-circuit photovoltage depends linearly on the illuminated position. The sensitivity of the LPE can be modified by the bias current. The LaTiO3+δ film shows a stable photoelectric property under the high pressure, up to 9 MPa. These results indicate that the LaTiO3+δ films can give rise to a potentially photoelectronic device for near-infrared position-sensitive detection in high-pressure environments.展开更多
基金the National Natural Science Foundation of China(grant No.52108067).
文摘The global prevalence of infectious diseases has emerged as a significant challenge in recent years.Surface transmission is a potential transmission route of most gastrointestinal and respiratory infectious diseases,which is related to surface touch behaviors.Manual observation,the traditional method of surface touching data collection,is characterized by limited accuracy and high labor costs.In this work,we proposed a methodology based on machine learning technologies aimed at obtaining high-accuracy and low-labor-cost surface touch behavioral data by means of sensor-based contact data.The touch sensing device,primarily utilizing a film pressure sensor and Arduino board,is designed to automatically detect and collect surface contact data,encompassing pressure,duration and position.To make certain the surface touch behavior and to describe the behavioral data more accurately,six classification algorithms(e.g.Support Vector Machine and Random Forest)have been trained and tested on an experimentally available dataset containing more than 500 surface contacts.The classification results reported the accuracy of above 85%for all the six classifiers and indicated that Random Forest performed best in identifying surface touch behaviors,with 91.8%accuracy,91.9%precision and 0.98 AUC.The study conclusively demonstrated the feasibility of identifying surface touch behaviors through film pressure sensor-based data,offering robust support for the calculation of viral load and exposure risk associated with surface transmission.
基金supported by the National Key Basic Research and Development Programme of China(No.2001CB610504)the National Natural Science Foundation of China(Grant No.60576039,10374060).
文摘Transparent conducting oxide film of molybdenum-doped zinc oxide (MZO) with high transparency and relatively low resistivity was prepared by RF (radio frequency) magnetron sputtering at room temperature. The structural, electrical, and optical properties of the films deposited under different Ar pressure were investigated.XRD (X-ray diffraction) patterns show that the nature of the films is polycrystalline with a hexagonal structure and a preferred orientation along the c-axis. The resistivity increases as Ar pressure increases. The lowest range exceeds 88% for all the samples. The optical band gap decreases from 3.27 to 3.15 eV with increasing Ar pressure from 0.6 to 3.0 Pa.
基金Funded by National Natural Science Foundation of China(Nos.51272195,51521001)111 project(No.B13035)+1 种基金Hubei Provincial National Natural Science Foundation(No.2015CFB724)Fundamental Research Funds for the Central Universities(Nos.2013-ZD-4,2014-KF-3)
文摘Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.
文摘Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the substrate is heated to 300 C, hard hydrogenated amorphous carbon film is deposited. From the IR deconvolution analysis of the C-H stretching absorption for the coating, the hydrocarbon group ration (CH3:CH2:CH) and C-C bond type ratio (sp3c/sp2c) are about 10%: 21%: 69% and 3:1~6:1,respectively. Their Knoop hardness is up to 10Gpa. No film isdeposited when the content of methane in the mixed gases is decreased to 5% at 300 C silicon substrate.
基金Supported by National Science and Technology Support Program of China:Vibration and Noise Reduction Technology Research and Application of Bulldozers and Other Earth Moving Machinery(Grant No.2015BAF07B04)
文摘To understand the engine main bearings' working condition is important in order to improve the performance of engine. However, thermal effects and thermal effect deformations of engine main bearings are rarely considered simultaneously in most studies. A typical finite element model is selected and the effect of thermoelastohydrodynamic(TEHD) reaction on engine main bearings is investigated. The calculated method of main bearing's thermal hydrodynamic reaction and journal misalignment effect is finite difference method, and its deformation reaction is calculated by using finite element method. The oil film pressure is solved numerically with Reynolds boundary conditions when various bearing characteristics are calculated. The whole model considers a temperature-pressure-viscosity relationship for the lubricant, surface roughness effect, and also an angular misalignment between the journal and the bearing. Numerical simulations of operation of a typical I6 diesel engine main bearing is conducted and importance of several contributing factors in mixed lubrication is discussed. The performance characteristics of journal misaligned main bearings under elastohydrodynamic(EHD) and TEHD loads of an I6 diesel engine are received, and then the journal center orbit movement, minimum oil film thickness and maximum oil film pressure of main bearings are estimated over a wide range of engine operation. The model is verified through the comparison with other present models. The TEHD performance of engine main bearings with various effects under the influences of journal misalignment is revealed, this is helpful to understand EHD and TEHD effect of misaligned engine main bearings.
基金This paper is financially supported by Trans Century Training Programme Foundation for the Talents by the State Education Commission,PR China.
文摘Observation of fatigue crack initiation and propagation during fatigue test in ALSn20Cu bearing has been presented. Journal center orbit, oil film pressure and stress distribution in alloy layer have been calculated and are taken as the basis for theoretically simulating the bearing fatigue process. It is found that the calculated results are in good accordance with the experimental results, which provides a feasible way for investigation of fatigue crack propagation process in the bearing.
基金This project is supported by Specialized Research Fund for Doctoral Program of Higher Education, China(No.20030561007)
文摘The acid number of the mixed solution of 150SN oil and oleic acid characterizes the volume content of oleic acid in the solution, based on which the adsorptive capability of oleic acid is studied on the 45 steel balls and disks. Boundary lubrication tests are carried out on a self designed ball-on-disk machine, The base oil is pure 150SN oil, and oleic acid as additive are added into the lubricant. Disks have surface roughness values (Ra) of 0.8 μn and 0.4 μn. The electrical contact resistance method is used to determine the lubrication status. Hypothesize that the molecular film is monomolecular layer in condensed state and the opposing surfaces are completely separated by molecular film. A boundary lubrication model is established according to experimental results and hypothesizes. The experimental and calculatienal results show that the adsorption of polar molecules on steel surface is the main factor to form the boundary lubrication film. Load and sliding speed contribute little to the friction coefficient of boundary lubrication. The properties of steel surface and additive for the lubricant significantly influence on the characters of boundary lubrication. The smaller the surface roughness value is, the smaller the friction coefficient of the boundary lubrication is.
文摘Lubrication in cold rolling process is used not only to control friction,but also to control surface quality and thermal chamber.Successful cold rolling of strip at high speeds requires an optimum presence of lubricant film thickness at the contact.In order to have a better control on rolling process the awareness for the prediction and maintenance of desired minimum film thickness.On the basis of learning and summarizing the theories early founded by experts around the world,this paper constructed the mixed lubrication model. This paper investigated the lubrication state variation caused by oil and rolling condition differences by cold rolling experiments.The experiments indicated that oil has a big influence to rolling process,and rolling speed directly influence the lubrication state.
文摘BACKGROUND In rotator cuff repair surgery,the double-row technique is widely performed.Studies have shown that with increased contact area and pressure between tendon and bone interface,better healing is promoted.AIM To assess the different suture configurations with the double-row technique and how this influences the contact area of the rotator cuff tendon to bone.METHODS This was a controlled laboratory study where identical tears were created in 24 fresh porcine shoulders over a 1.5 cm×2.5 cm infraspinatus insertion footprint.Double-row repair techniques,with 3 to 4-suture anchors in different configurations(2 medial,2 lateral vs 2 medial,1 lateral vs 1 medial,2 lateral),were employed for three control groups.Each group consisted of eight shoulders with identical repair configurations.Footprint contact areas of the repaired tendon against the tuberosity were determined using pressure sensitive Fujifilm placed between the tendon and tuberosity.RESULTS The mean contact area between tendon and insertion footprint from the imprinted Fujifilm was obtained using computer software.The contact area measured from a standard 4-suture anchor double row repair was 75.1±9.3 mm2,whereas areas obtained for the 2 lateral-1 medial and 2 medial-1 lateral anchor configurations were 72.9±5.2 mm2 and 75.0±4.9 mm2 respectively.No statistical significance was noted between the three groups.CONCLUSION In the technique of double-row repair,using a 3-suture anchor configuration may offer a non-inferior alternative to the standard 4-anchor construct in terms of efficacy.This may also result in overall cost reduction and shorter surgical time.
基金supported by National Natural Science Foundation of China (50871007)
文摘The Tb40(Fe49Co49V2)60 films were fabricated by magnetron cosputtering from a multiple target arrangement at different argon pressures.The samples were investigated using X-ray diffraction,magnetic force microscope and vibrating sample magnetometer.A strong perpendicular anisotropy was obtained for the sample prepared at 0.4 Pa.The easy direction of magnetization could be turned from perpendicular to in-plane direction either at high working pressures(P Ar >2.0 Pa) or by annealing at temperatures higher than 250 °C.An excellent magnetic softness with coercivity below 3 mT and saturating field of 20 mT in film-plane direction was obtained for the sample prepared at 0.7 Pa and then annealed at 350 °C.
基金the National High Technology Research and Development Program of China (863 Program) (Grant No.2013AA031903)the Youth 973 Program (Grant No.2015CB932700)+7 种基金the National Natural Science Foundation of China (Grant Nos.91433107, 51222208, and 51290273)the Doctoral Fund of Ministry of Education of China (Grant No.20123201120026)ARC DP (DP140101501)ARC DECRA (DE120101569)Victoria DSI top-up grantthe Natural Science Foundation of Jiangsu Province (No.BK20130328)China Postdoctoral Science Foundation (No. 2014M551654)Jiangsu Province Postdoctoral Science Foundation (No.1301020A)
文摘Atomically thin MoS2 films have attracted significant attention due to excellent electrical and optical properties.The development of device applications demands the production of large-area thin film which is still an obstacle.In this work we developed a facile method to directly grow large-area MoS2 thin film on Si O2 substrate via ambient pressure chemical vapor deposition method. The characterizations by spectroscopy and electron microscopy reveal that the as-grown MoS2 film is mainly bilayer and trilayer with high quality. Back-gate field-effect transistor based on such MoS2 thin film shows carrier mobility up to 3.4 cm2V-1s-1 and on/off ratio of 105. The large-area atomically thin MoS2 prepared in this work has the potential for wide optoelectronic and photonic device applications.
基金supported by the National 973 Program of China (No. 2014CB744302)the Specially Founded Program on National Key Scientific Instruments and Equipment Development (No. 2012YQ140005)
文摘A lateral photovoltaic effect (LPE) is discovered in an LaTiO3+8 film epitaxially grown on a (100) SrTiO3 substrate. Under the illumination of a continuous 808 nm laser beam that is focused on the LaTiO3+δ film through the SrTiO3 substrate, the open-circuit photovoltage depends linearly on the illuminated position. The sensitivity of the LPE can be modified by the bias current. The LaTiO3+δ film shows a stable photoelectric property under the high pressure, up to 9 MPa. These results indicate that the LaTiO3+δ films can give rise to a potentially photoelectronic device for near-infrared position-sensitive detection in high-pressure environments.