The structural integrity of the sperm flagellum is essential for proper sperm function.Flagellar defects can result in male infertility,yet the precise mechanisms underlying this relationship are not fully understood....The structural integrity of the sperm flagellum is essential for proper sperm function.Flagellar defects can result in male infertility,yet the precise mechanisms underlying this relationship are not fully understood.CCDC181,a coiled-coil domain-containing protein,is known to localize on sperm flagella and at the basal regions of motile cilia.Despite this knowledge,the specific functions of CCDC181 in flagellum biogenesis remain unclear.In this study,Ccdc181 knockout mice were generated.The absence of CCDC181 led to defective sperm head shaping and flagellum formation.Furthermore,the Ccdc181 knockout mice exhibited extremely low sperm counts,grossly aberrant sperm morphologies,markedly diminished sperm motility,and typical multiple morphological abnormalities of the flagella(MMAF).Additionally,an interaction between CCDC181 and the MMAF-related protein LRRC46 was identified,with CCDC181 regulating the localization of LRRC46 within sperm flagella.These findings suggest that CCDC181 plays a crucial role in both manchette formation and sperm flagellum biogenesis.展开更多
Infertility represents a significant health concern,with sperm quantity and quality being crucial determinants of male fertility.Oligoasthenoteratozoospermia(OAT)is characterized by reduced sperm motility,lower sperm ...Infertility represents a significant health concern,with sperm quantity and quality being crucial determinants of male fertility.Oligoasthenoteratozoospermia(OAT)is characterized by reduced sperm motility,lower sperm concentration,and morphological abnormalities in sperm heads and flagella.Although variants in several genes have been implicated in OAT,its genetic etiologies and pathogenetic mechanisms remain inadequately understood.In this study,we identified a homozygous nonsense mutation(c.916C>T,p.Arg306*)in the coiled-coil domain containing 146(CCDC146)gene in an infertile male patient with OAT.This mutation resulted in the production of a truncated CCDC146 protein(amino acids 1-305),retaining only two out of five coiled-coil domains.To validate the pathogenicity of the CCDC146 mutation,we generated a mouse model(Ccdc146^(mut/mut))with a similar mutation to that of the patient.Consistently,the Ccdc146mut/mut mice exhibited infertility,characterized by significantly reduced sperm counts,diminished motility,and multiple defects in sperm heads and flagella.Furthermore,the levels of axonemal proteins,including DNAH17,DNAH1,and SPAG6,were significantly reduced in the sperm of Ccdc146^(mut/mut) mice.Additionally,both human and mouse CCDC146 interacted with intraflagellar transport protein 20(IFT20),but this interaction was lost in the mutated versions,leading to the degradation of IFT20.This study identified a novel deleterious homozygous nonsense mutation in CCDC146 that causes male infertility,potentially by disrupting axonemal protein transportation.These findings offer valuable insights for genetic counseling and understanding the mechanisms underlying CCDC146 mutant-associated infertility in human males.展开更多
基金supported by the National Natural Science Foundation of China(82071709,81971446,82171599,82374212)Global Select Project(DJK-LX-2022010)of the Institute of Health and Medicine,Hefei Comprehensive National Science CenterJoint Fund for New Medicine of USTC(YD9100002034)。
文摘The structural integrity of the sperm flagellum is essential for proper sperm function.Flagellar defects can result in male infertility,yet the precise mechanisms underlying this relationship are not fully understood.CCDC181,a coiled-coil domain-containing protein,is known to localize on sperm flagella and at the basal regions of motile cilia.Despite this knowledge,the specific functions of CCDC181 in flagellum biogenesis remain unclear.In this study,Ccdc181 knockout mice were generated.The absence of CCDC181 led to defective sperm head shaping and flagellum formation.Furthermore,the Ccdc181 knockout mice exhibited extremely low sperm counts,grossly aberrant sperm morphologies,markedly diminished sperm motility,and typical multiple morphological abnormalities of the flagella(MMAF).Additionally,an interaction between CCDC181 and the MMAF-related protein LRRC46 was identified,with CCDC181 regulating the localization of LRRC46 within sperm flagella.These findings suggest that CCDC181 plays a crucial role in both manchette formation and sperm flagellum biogenesis.
基金supported by the National Key Research and Developmental Program of China(2021YFC2700202,2022YFC2702601,2019YFA0802600,2022YFA0806303)National Natural Science Foundation of China(32470915,32000587,32270901,82171601)+1 种基金Global Select Project(DJK-LX-2022010)of the Institute of Health and Medicine,Hefei Comprehensive National Science Center,Joint Fund for New Medicine of USTC(YD9100002034)Scientific Research Foundation for Scholars of the First Affiliated Hospital of USTC(RC2023054)。
文摘Infertility represents a significant health concern,with sperm quantity and quality being crucial determinants of male fertility.Oligoasthenoteratozoospermia(OAT)is characterized by reduced sperm motility,lower sperm concentration,and morphological abnormalities in sperm heads and flagella.Although variants in several genes have been implicated in OAT,its genetic etiologies and pathogenetic mechanisms remain inadequately understood.In this study,we identified a homozygous nonsense mutation(c.916C>T,p.Arg306*)in the coiled-coil domain containing 146(CCDC146)gene in an infertile male patient with OAT.This mutation resulted in the production of a truncated CCDC146 protein(amino acids 1-305),retaining only two out of five coiled-coil domains.To validate the pathogenicity of the CCDC146 mutation,we generated a mouse model(Ccdc146^(mut/mut))with a similar mutation to that of the patient.Consistently,the Ccdc146mut/mut mice exhibited infertility,characterized by significantly reduced sperm counts,diminished motility,and multiple defects in sperm heads and flagella.Furthermore,the levels of axonemal proteins,including DNAH17,DNAH1,and SPAG6,were significantly reduced in the sperm of Ccdc146^(mut/mut) mice.Additionally,both human and mouse CCDC146 interacted with intraflagellar transport protein 20(IFT20),but this interaction was lost in the mutated versions,leading to the degradation of IFT20.This study identified a novel deleterious homozygous nonsense mutation in CCDC146 that causes male infertility,potentially by disrupting axonemal protein transportation.These findings offer valuable insights for genetic counseling and understanding the mechanisms underlying CCDC146 mutant-associated infertility in human males.