With accelerated urbanization and climate change,urban flooding is becoming more and more serious.Flood risk assessment is an important task for flood management,so it is crucial to map the spatial and temporal distri...With accelerated urbanization and climate change,urban flooding is becoming more and more serious.Flood risk assessment is an important task for flood management,so it is crucial to map the spatial and temporal distribution of flood risk.This paper proposed an urban flood risk assessment method that takes into account the influences of hazard,vulnerability,and exposure,by constructing a multi-index urban flood risk assessment framework based on Geographic Information System(GIS).To determine the weight values of urban flood risk index factors,we used the analytic hierarchy process(AHP).Also,we plotted the temporal and spatial distribution maps of flood risk in Zhengzhou City in 2000,2005,2010,2015,and 2020.The analysis results showed that,the proportion of very high and high flood risk zone in Zhengzhou City was 1.362%,5.270%,4.936%,12.151%,and 24.236%in 2000,2005,2010,2015,and 2020,respectively.It is observed that the area of high flood risk zones in Zhengzhou City showed a trend of increasing and expanding,of which Dengfeng City,Xinzheng City,Xinmi City,and Zhongmu County had the fastest growth rate and the most obvious increase.The flood risk of Zhengzhou City has been expanding with the development of urbanization.The method is adapted to Zhengzhou City and will have good adaptability in other research areas,and its risk assessment results can provide a scientific reference for urban flood management personnel.In the future,the accuracy of flood risk assessment can be further improved by promoting the accuracy of basic data and reasonably determining the weight values of index factors.The risk zoning map can better reflect the risk distribution and provide a scientific basis for early warning of flood prevention and drainage.展开更多
This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the l...This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the lagoon, which include factors such as size, depth, water quality, and ecosystem composition. Secondly, the influence of precipitation on the water volume in the lagoon will be examined. This analysis involves assessing historical rainfall patterns in the region, as well as the amount and frequency of precipitation during the 2021 flood event. Thirdly, the hydrogeologic and geologic conditions of the lagoon will be evaluated. This involves examining factors such as the type and structure of the soil and bedrock, the presence of aquifers or other underground water sources, and the movement of water through the surrounding landscape. Finally, the study seeks to assess the risk of future flooding in Tasi-Tolu Lagoon, based on the insights gained from the previous analyses. Overall, this study’s goal is to provide a comprehensive understanding of the hydrogeological factors that contribute to flooding in Tasi-Tolu Lagoon. This knowledge could be used to inform flood mitigation strategies or to improve our ability to predict and respond to future flooding events in the region.展开更多
The return level of the joint distribution of flood levels and flood peak discharges was analyzed by Archimedean Gumbel-Hougaard copula and Kendall distribution functions.Using the annual maximum level(H)and discharge...The return level of the joint distribution of flood levels and flood peak discharges was analyzed by Archimedean Gumbel-Hougaard copula and Kendall distribution functions.Using the annual maximum level(H)and discharge(Q)of flood peak at Boluo Hydrologic Station in the Dongjiang River in last 56 years,the"OR"return period,"AND"return period and Kendall return period of their joint distribution and the most likely design flood value were calculated.The main conclusions of this study can be summarized as follows:the Kendall return period can more accurately reflect the risk rate of the combination of flood elements,relative to"OR"return period and"AND"return period.The design value of univariate flood element based on the current specification can meet the design standard.While the design value calculated according to"OR"return period was on the high side,and the design value calculated by the"AND"return period was on low side.Based on the principle of maximum probability,the calculated design value of Kendall return period under the different combinations of flood peak discharge and water level can provide new options for flood control project safety and risk management.展开更多
Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan wit...Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan with respect to population affected, environmental degradations, and socio-economic and property damages. The Super Flood, which hit Sindh in 2010, has turned out to be a wakeup call and has underlined the overwhelming challenge of natural calamities, as 2010 flood and the preceding flood in 2011 caused a huge loss to life, property and land use. These floods resulted in disruption of power, telecommunication, and water utilities in many districts of Pakistan, including 22 districts of Sindh. These floods call for risk assessment and hazard mapping of Lower Indus Basin flowing in the Sindh Province as such areas were also inundated in 2010 flood, which were not flooded in the past in this manner. This primary focus of this paper is the use of Multi-criteria Evaluation (MCE) methods in integration with the Geographical Information System (GIS) for the analysis of areas prone to flood. This research demonstrated how GIS tools can be used to produce map of flood vulnerable areas using MCE techniques. Slope, Aspect, Curvature, Soil, and Distance from Drainage, Land use, Precipitation, Flow Direction, and Flow Accumulation are taken as the causative factors for flooding in Lower Indus Basin. Analytical Hierarchy Process-AHP was used for the calculation of weights of all these factors. Finally, a flood hazard Map of Lower Indus Basin was generated which delineates the flood prone areas in the Sindh province along Indus River Basin that could be inundated by potential flooding in future. It is aimed that flood hazard mapping and risk assessment using open source geographic information system can serve as a handy tool for the development of land-use strategies so as to decrease the impact from flooding.展开更多
This study integrates novel data on 100-year flood hazard extents,exposure of residential properties,and place-based social vulnerability to comprehensively assess and compare flood risk between Indigenous communities...This study integrates novel data on 100-year flood hazard extents,exposure of residential properties,and place-based social vulnerability to comprehensively assess and compare flood risk between Indigenous communities living on 985 reserve lands and other Canadian communities across 3701 census subdivisions.National-scale exposure of residential properties to fluvial,pluvial,and coastal flooding was estimated at the 100-year return period.A social vulnerability index(SVI)was developed and included 49 variables from the national census that represent demographic,social,economic,cultural,and infrastructure/community indicators of vulnerability.Geographic information system-based bivariate choropleth mapping of the composite SVI scores and of flood exposure of residential properties and population was completed to assess the spatial variation of flood risk.We found that about 81%of the 985 Indigenous land reserves had some flood exposure that impacted either population or residential properties.Our analysis indicates that residential property-level flood exposure is similar between non-Indigenous and Indigenous communities,but socioeconomic vulnerability is higher on reserve lands,which confirms that the overall risk of Indigenous communities is higher.Findings suggest the need for more local verification of flood risk in Indigenous communities to address uncertainty in national scale analysis.展开更多
基金the National Natural Science Foundation of China(52192671,51979285)the Research Fund of the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(SKL2022TS11)。
文摘With accelerated urbanization and climate change,urban flooding is becoming more and more serious.Flood risk assessment is an important task for flood management,so it is crucial to map the spatial and temporal distribution of flood risk.This paper proposed an urban flood risk assessment method that takes into account the influences of hazard,vulnerability,and exposure,by constructing a multi-index urban flood risk assessment framework based on Geographic Information System(GIS).To determine the weight values of urban flood risk index factors,we used the analytic hierarchy process(AHP).Also,we plotted the temporal and spatial distribution maps of flood risk in Zhengzhou City in 2000,2005,2010,2015,and 2020.The analysis results showed that,the proportion of very high and high flood risk zone in Zhengzhou City was 1.362%,5.270%,4.936%,12.151%,and 24.236%in 2000,2005,2010,2015,and 2020,respectively.It is observed that the area of high flood risk zones in Zhengzhou City showed a trend of increasing and expanding,of which Dengfeng City,Xinzheng City,Xinmi City,and Zhongmu County had the fastest growth rate and the most obvious increase.The flood risk of Zhengzhou City has been expanding with the development of urbanization.The method is adapted to Zhengzhou City and will have good adaptability in other research areas,and its risk assessment results can provide a scientific reference for urban flood management personnel.In the future,the accuracy of flood risk assessment can be further improved by promoting the accuracy of basic data and reasonably determining the weight values of index factors.The risk zoning map can better reflect the risk distribution and provide a scientific basis for early warning of flood prevention and drainage.
文摘This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the lagoon, which include factors such as size, depth, water quality, and ecosystem composition. Secondly, the influence of precipitation on the water volume in the lagoon will be examined. This analysis involves assessing historical rainfall patterns in the region, as well as the amount and frequency of precipitation during the 2021 flood event. Thirdly, the hydrogeologic and geologic conditions of the lagoon will be evaluated. This involves examining factors such as the type and structure of the soil and bedrock, the presence of aquifers or other underground water sources, and the movement of water through the surrounding landscape. Finally, the study seeks to assess the risk of future flooding in Tasi-Tolu Lagoon, based on the insights gained from the previous analyses. Overall, this study’s goal is to provide a comprehensive understanding of the hydrogeological factors that contribute to flooding in Tasi-Tolu Lagoon. This knowledge could be used to inform flood mitigation strategies or to improve our ability to predict and respond to future flooding events in the region.
基金Supported by the National Natural Science Foundation of China(41371498)Young Talents Innovation Project of Guangdong Education Department(6020210026K)+1 种基金Postdoctoral Funding Program(6020271006K)Innovation Project of Shenzhen Polychenic in 2019(cxgc2019c0005).
文摘The return level of the joint distribution of flood levels and flood peak discharges was analyzed by Archimedean Gumbel-Hougaard copula and Kendall distribution functions.Using the annual maximum level(H)and discharge(Q)of flood peak at Boluo Hydrologic Station in the Dongjiang River in last 56 years,the"OR"return period,"AND"return period and Kendall return period of their joint distribution and the most likely design flood value were calculated.The main conclusions of this study can be summarized as follows:the Kendall return period can more accurately reflect the risk rate of the combination of flood elements,relative to"OR"return period and"AND"return period.The design value of univariate flood element based on the current specification can meet the design standard.While the design value calculated according to"OR"return period was on the high side,and the design value calculated by the"AND"return period was on low side.Based on the principle of maximum probability,the calculated design value of Kendall return period under the different combinations of flood peak discharge and water level can provide new options for flood control project safety and risk management.
文摘Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan with respect to population affected, environmental degradations, and socio-economic and property damages. The Super Flood, which hit Sindh in 2010, has turned out to be a wakeup call and has underlined the overwhelming challenge of natural calamities, as 2010 flood and the preceding flood in 2011 caused a huge loss to life, property and land use. These floods resulted in disruption of power, telecommunication, and water utilities in many districts of Pakistan, including 22 districts of Sindh. These floods call for risk assessment and hazard mapping of Lower Indus Basin flowing in the Sindh Province as such areas were also inundated in 2010 flood, which were not flooded in the past in this manner. This primary focus of this paper is the use of Multi-criteria Evaluation (MCE) methods in integration with the Geographical Information System (GIS) for the analysis of areas prone to flood. This research demonstrated how GIS tools can be used to produce map of flood vulnerable areas using MCE techniques. Slope, Aspect, Curvature, Soil, and Distance from Drainage, Land use, Precipitation, Flow Direction, and Flow Accumulation are taken as the causative factors for flooding in Lower Indus Basin. Analytical Hierarchy Process-AHP was used for the calculation of weights of all these factors. Finally, a flood hazard Map of Lower Indus Basin was generated which delineates the flood prone areas in the Sindh province along Indus River Basin that could be inundated by potential flooding in future. It is aimed that flood hazard mapping and risk assessment using open source geographic information system can serve as a handy tool for the development of land-use strategies so as to decrease the impact from flooding.
基金The services and activities of SWORDC are made possible by the financial or in-kind support of the Social Sciences and Humanities Research Council of Canada,the Canadian Institutes of Health Research,ihe Canadian Foundation for Innovation,Statistics Canada,and the University of Waterloo
文摘This study integrates novel data on 100-year flood hazard extents,exposure of residential properties,and place-based social vulnerability to comprehensively assess and compare flood risk between Indigenous communities living on 985 reserve lands and other Canadian communities across 3701 census subdivisions.National-scale exposure of residential properties to fluvial,pluvial,and coastal flooding was estimated at the 100-year return period.A social vulnerability index(SVI)was developed and included 49 variables from the national census that represent demographic,social,economic,cultural,and infrastructure/community indicators of vulnerability.Geographic information system-based bivariate choropleth mapping of the composite SVI scores and of flood exposure of residential properties and population was completed to assess the spatial variation of flood risk.We found that about 81%of the 985 Indigenous land reserves had some flood exposure that impacted either population or residential properties.Our analysis indicates that residential property-level flood exposure is similar between non-Indigenous and Indigenous communities,but socioeconomic vulnerability is higher on reserve lands,which confirms that the overall risk of Indigenous communities is higher.Findings suggest the need for more local verification of flood risk in Indigenous communities to address uncertainty in national scale analysis.