期刊文献+
共找到261篇文章
< 1 2 14 >
每页显示 20 50 100
Flotation separation of scheelite from calcite using luteolin as a novel depressant
1
作者 Xiaokang Li Ying Zhang +3 位作者 Haiyang He Yu Wu Danyu Wu Zhenhao Guan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期462-472,共11页
This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through mic... This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through micro-flotation testing.At pH=9,with LUT concentration of 50 mg·L^(-1) and NaOL concentration of 50 mg·L^(-1),scheelite recovery reaches 80.3%.Calcite,on the other hand,exhibits a recovery rate of 17.6%,indicating a significant difference in floatability between the two minerals.Subsequently,the surface modifica-tions of scheelite and calcite following LUT treatment are characterized using adsorption capacity testing,Zeta potential analysis,Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and atomic force microscopy(AFM).The study in-vestigates the selective depressant mechanism of LUT on calcite.Adsorption capacity testing and Zeta potential analysis demonstrate sub-stantial absorption of LUT on the surface of calcite,impeding the further adsorption of sodium oleate,while its impact on scheelite is min-imal.FT-IR and XPS analyses reveal the selective adsorption of LUT onto the surface of calcite,forming strong chemisorption bonds between the hydroxyl group and calcium ions present.AFM directly illustrates the distinct adsorption densities of LUT on the two miner-al types.Consequently,LUT can effectively serve as a depressant for calcite,enabling the successful separation of scheelite and calcite. 展开更多
关键词 SCHEELITE CALCITE LUTEOLIN flotation depressant SEPARATION
下载PDF
Role of tannin pretreatment in flotation separation of magnesite and dolomite
2
作者 Xiufeng Gong Jin Yao +5 位作者 Jun Guo Bin Yang Haoran Sun Wanzhong Yin Yulian Wang Yafeng Fu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期452-461,共10页
Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulator... Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite. 展开更多
关键词 tannin pretreatment selective inhibition flotation separation MAGNESITE DOLOMITE
下载PDF
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review
3
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Advances in depressants for flotation separation of Cu–Fe sulfide minerals at low alkalinity:A critical review
4
作者 Qicheng Feng Wenhang Yang +3 位作者 Maohan Chang Shuming Wen Dianwen Liu Guang Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期1-17,共17页
The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the... The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed. 展开更多
关键词 Cu–Fe sulfide minerals flotation separation selective depressants depression mechanism
下载PDF
Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm
5
作者 Zhiqiang Wang Dakuo He Haotian Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期167-179,共13页
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust... Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process. 展开更多
关键词 Weighted Gaussian process regression Index-oriented adaptive differential evolution Operational optimization Copper flotation process
下载PDF
Latest advances and progress in the microbubble flotation of fine minerals:Microbubble preparation,equipment,and applications 被引量:1
6
作者 Ziyong Chang Sensen Niu +2 位作者 Zhengchang Shen Laichang Zou Huajun Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1244-1260,共17页
In the past few decades,microbubble flotation has been widely studied in the separation and beneficiation of fine minerals.Compared with conventional flotation,microbubble flotation has obvious advantages,such as high... In the past few decades,microbubble flotation has been widely studied in the separation and beneficiation of fine minerals.Compared with conventional flotation,microbubble flotation has obvious advantages,such as high grade and recovery and low consumption of flotation reagents.This work systematically reviews the latest advances and research progress in the flotation of fine mineral particles by microbubbles.In general,microbubbles have small bubble size,large specific surface area,high surface energy,and good selectivity and can also easily be attached to the surface of hydrophobic particles or large bubbles,greatly reducing the detaching probability of particles from bubbles.Microbubbles can be prepared by pressurized aeration and dissolved air,electrolysis,ultrasonic cavitation,photocatalysis,solvent exchange,temperature difference method(TDM),and Venturi tube and membrane method.Correspondingly,equipment for fine-particle flotation is categorized as microbubble release flotation machine,centrifugal flotation column,packed flotation column,and magnetic flotation machine.In practice,microbubble flotation has been widely studied in the beneficiation of ultrafine coals,metallic minerals,and nonmetallic minerals and exhibited superiority over conventional flotation machines.Mechanisms underpinning the promotion of fine-particle flotation by nanobubbles include the agglomeration of fine particles,high stability of nanobubbles in aqueous solutions,and enhancement of particle hydrophobicity and flotation dynamics. 展开更多
关键词 microbubble preparation flotation fine minerals flotation equipment bubble-particle interaction
下载PDF
Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite 被引量:3
7
作者 Runpeng Liao Shuming Wen +2 位作者 Qicheng Feng Jiushuai Deng Hao Lai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期271-282,共12页
The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated... The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions. 展开更多
关键词 PYRITE ARSENOPYRITE ammonium oxalate flotation separation
下载PDF
Effect of depressants on flotation separation of magnesite from dolomite and calcite 被引量:2
8
作者 Wenqing Qin Junjie Hu +4 位作者 Hailing Zhu Fen Jiao Wenhao Jia Junwei Han Chen Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期83-91,共9页
The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosu... The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity. 展开更多
关键词 Sodium silicate MAGNESITE DOLOMITE CALCITE flotation separation INHIBITION
下载PDF
Enhanced inhibition of talc flotation using acidified sodium silicate and sodium carboxymethyl cellulose as the combined inhibitor 被引量:2
9
作者 Jiwei Xue Huazhen Tu +3 位作者 Jin Shi Yanni An He Wan Xianzhong Bu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1310-1319,共10页
The flotation separation of chalcopyrite and talc is challenging due to their similar natural floatability characteristics.Besides,it is usually difficult to effectively inhibit talc by adding sodium carboxymethyl cel... The flotation separation of chalcopyrite and talc is challenging due to their similar natural floatability characteristics.Besides,it is usually difficult to effectively inhibit talc by adding sodium carboxymethyl cellulose(CMC)alone during chalcopyrite flotation.Here,a combined inhibitor comprising acidified sodium silicate(ASS)and CMC was employed to realize effective flotation separation of chalcopyrite and talc,and the combined inhibition mechanism was further investigated.Microflotation results showed that adding ASS strengthened the inhibitory effect of CMC on talc and improved the separation of chalcopyrite and talc.The zeta potential,Fourier transform infrared,and X-ray photoelectron spectroscopy analysis indicated that CMC was mainly adsorbed on the talc surface via hydroxyl and carboxyl groups.Moreover,the addition of ASS improved the adsorption of carboxyl groups.Furthermore,the adsorption experiments and apparent viscosity measurements revealed that adding ASS dispersed the pulp well,which reduced the apparent viscosity,improved the adsorption amount of CMC on the talc surface,and enhanced the inhibition of talc in chalcopyrite flotation. 展开更多
关键词 TALC CHALCOPYRITE flotation combined inhibitor apparent viscosity
下载PDF
A novel cationic collector for silicon removal from collophane using reverse flotation under acidic conditions 被引量:2
10
作者 Zhongxian Wu Dongping Tao +2 位作者 Youjun Tao Man Jiang Patrick Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1038-1047,共10页
We analyzed a novel cationic collector using chemical plant byproducts,such as cetyltrimethylammonium bromide(CTAB)and dibutyl phthalate(DBP).Our aim is to establish a highly effective and economical process for the r... We analyzed a novel cationic collector using chemical plant byproducts,such as cetyltrimethylammonium bromide(CTAB)and dibutyl phthalate(DBP).Our aim is to establish a highly effective and economical process for the removal of quartz from collophane.A microflotation test with a 25 mg·L^(−1)collector at pH value of 6-10 demonstrates a considerable difference in the floatability of pure quartz and fluorapatite.Flotation tests for a collophane sample subjected to the first reverse flotation for magnesium removal demonstrates that a rough flotation process(using a 0.4 kg·t−1 new collector at pH=6)results in a collophane concentrate with 29.33wt%P_(2)O_(5)grade and 12.66wt%SiO2 at a 79.69wt%P_(2)O_(5)recovery,providing desirable results.Mechanism studies using Fourier transform infrared spectroscopy,zeta potential,and contact angle measurements show that the adsorption capacity of the new collector for quartz is higher than that for fluorapatite.The synergistic effect of DBP increases the difference in hydrophobicity between quartz and fluorapatite.The maximum defoaming rate of the novel cationic collector reaches 142.8 mL·min−1.This is considerably higher than that of a conventional cationic collector. 展开更多
关键词 cationic collector collophane DEFOAMING QUARTZ reverse flotation
下载PDF
A depressant for marmatite flotation:Synthesis,characterisation and floatation performance 被引量:2
11
作者 Tichen Wang Guiju Sun +5 位作者 Jiushuai Deng Hongxiang Xu Guoyong Wang Mingzhen Hu Qizheng Qin Xiaohao Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1048-1056,共9页
This study synthesised a zincic salt(ZS)as a depressant for marmatite-galena separation.The effect of ZS on the flotation of marmatite and galena was investigated through micro-flotation tests.88.89%of the galena was ... This study synthesised a zincic salt(ZS)as a depressant for marmatite-galena separation.The effect of ZS on the flotation of marmatite and galena was investigated through micro-flotation tests.88.89%of the galena was recovered and 83.39%of the marmatite was depressed with ZS dosage of 750 mg·L^(−1)at pH=4.The depression mechanism of ZS on marmatite was investigated by a variety of techniques,including adsorption measurements,Fourier transform infrared(FTIR),X-ray photoelectron spectroscopic(XPS)analysis,and time of flight secondary ion mass spectrometry(ToF-SIMS).Results of adsorption tests and FTIR reveal that ZS adsorbed on marmatite surface and impeded the subsequent adsorption of butyl xanthate(BX).The results of XPS and ToF-SIMS indicate that the ZnO_(2)^(3-)released by ZS could be chemisorbed on the marmatite surface and depress marmatite flotation. 展开更多
关键词 MARMATITE zincic salt flotation separation depression mechanism time of flight secondary ion mass spectrometry
下载PDF
Application of EDTMPS as a novel calcite depressant in scheelite flotation 被引量:1
12
作者 Fen Jiao Wei Li +4 位作者 Xu Wang Congren Yang Zhengquan Zhang Liwen Fu Wenqing Qin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期639-647,共9页
In this study, the innovative use of ethylenediamine tetramethylene phosphonic sodium(EDTMPS) as a calcite depressant in scheelite flotation was investigated by flotation experiments, and its selective depression mech... In this study, the innovative use of ethylenediamine tetramethylene phosphonic sodium(EDTMPS) as a calcite depressant in scheelite flotation was investigated by flotation experiments, and its selective depression mechanism was revealed by contact angle measurement, FTIR analysis, Zeta potential test and XPS analysis. The flotation experiment results showed that scheelite and calcite could be efficiently separated under the following conditions: pulp p H=9.5, Na OL concentration of 1.5×10^(-4)mol/L, EDTMPS concentration of 3.0×10^(-5)mol/L, a scheelite concentrate with WO3grade of 65.49%, recovery of 83.29%and separation efficiency of 65.29% could be obtained from the artificially mixed minerals. The analysis results of mineral surface properties demonstrated that EDTMPS was strongly adsorbed onto the calcite surface through the reaction between the phosphonate group and the calcium ions, which hindered Na OL adsorption and increased the hydrophilicity of calcite. However, EDTMPS had weak adsorption strength on the scheelite surface, which didn’t affect further adsorption of Na OL, hence, the scheelite remained hydrophobic. Consequently, the selective adsorption of EDTMPS on the two minerals’ surfaces increased a difference in wettability and thus enabling them to be separated by flotation. Finally, the mechanism model of this flotation separation process was established. 展开更多
关键词 Ethylenediamine tetramethylene phosphonic sodium SCHEELITE CALCITE flotation Selective depression
下载PDF
Experimental study on the dispersion behavior of a microemulsion collector and its mechanism for enhancing low-rank coal flotation 被引量:1
13
作者 Fan Lian Guosheng Li +3 位作者 Yijun Cao Baoxun Zhao Guangli Zhu Kai Fan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期893-901,共9页
As the poor dispersion of oily collectors and the inferior hydrophobicity of the mineral surface, the lowrank coal has an unsatisfactory flotation performance when using traditional collectors. In this paper, an ionic... As the poor dispersion of oily collectors and the inferior hydrophobicity of the mineral surface, the lowrank coal has an unsatisfactory flotation performance when using traditional collectors. In this paper, an ionic liquid microemulsion was used as a collector to enhance its floatability. Flotation test results demonstrated the microemulsion collector exhibited a superior collecting ability. A satisfactory separation performance of 78.66% combustible material recovery was obtained with the microemulsion collector consumption of 6 kg/t, which was equivalent to the flotation performance of diesel at a dosage of25 kg/t. The dispersion behavior of the microemulsion collector was investigated using the CryogenicTransmission Electron Microscopy. The interaction mechanism of the microemulsion collector on enhancing the low-rank coal flotation was elucidated through the Zeta potential and contact angle measurements, the Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis.The microemulsion collector exhibited superior dispersibility, which was dispersed into positively charged oil droplets with an average size of 160.21 nm in the pulp. Furthermore, the nano-oil droplets could be more efficiently adsorbed on the low-rank coal surface through electrostatic attraction, resulting in the improvement of its hydrophobicity. Thus, the microemulsion collector shows great application potential in improving the flotation performance of low-rank coal. 展开更多
关键词 MICROEMULSION DISPERSION Nano-oil droplets flotation Interaction mechanisms
下载PDF
Flotation separation depressants for scheelite and calcium-bearing minerals: A review 被引量:1
14
作者 Ziming Wang Bo Feng Yuangan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1621-1632,共12页
Owing to the depletion of wolframite, the focus of tungsten extraction has gradually shifted to scheelite. However, separating the associated minerals(e.g., apatite, fluorite, and calcite) and scheelite is challenging... Owing to the depletion of wolframite, the focus of tungsten extraction has gradually shifted to scheelite. However, separating the associated minerals(e.g., apatite, fluorite, and calcite) and scheelite is challenging because their surface physicochemical properties are similar to those of scheelite. Fortunately, researchers have made substantial progress in separating the minerals of scheelite by using depressants. This study reviews the application and inhibition mechanism of inorganic depressants in obtaining tungsten from its calcium-bearing minerals. The application of new organic depressants in obtaining tungsten from its calcium-bearing minerals and the associated mechanisms are also summarized. After an objective assessment of inorganic and organic depressants’ advantages and disadvantages, possible future research directions for inorganic and organic depressants are proposed. Herein, we provide a theoretical basis for developing scheelite flotation depressants. 展开更多
关键词 SCHEELITE calcium-bearing minerals flotation depressant
下载PDF
Preparation of cinnamic hydroxamic acid collector and study on flotation characteristics and mechanism of scheelite 被引量:1
15
作者 Xiang Yao Xinyang Yu +7 位作者 Liping Wang Yuhui Zeng Linghan Mao Shanming Liu Honghui Xie Guichun He Zhiqiang Huang Zhilin Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期773-781,共9页
In this paper,using methyl cinnamate as raw material,the new cinnamic hydroxamic acid collector(CIHA)was synthesized by the hydroxylamine method.The collector performance of hydroxamic acid was investigated for scheel... In this paper,using methyl cinnamate as raw material,the new cinnamic hydroxamic acid collector(CIHA)was synthesized by the hydroxylamine method.The collector performance of hydroxamic acid was investigated for scheelite and gangue calcite,and the flotation separation test of scheelite and calcite was carried out with CIHA as the collector.The interaction mechanism between hydroxamic acid and scheelite minerals has also been investigated through zeta potential,Fourier transform infrared spectroscopy(FTIR)experiments,X-ray photoelectron spectroscopy(XPS)experiments,and density functional theory(DFT)calculation.The single mineral flotation test and artificially mixed ore showed that CIHA had an excellent collection effect and selectivity.Zeta potential,FTIR,and XPS showed that CIHA was adsorbed on the scheelite surface by strong chemical adsorption.The active group of CIHA was analyzed through quantum chemical calculation.It was speculated that C=O and N-O bonds could synthesize a five-membered chelated hydroxamic acid group with Ca element chelate on scheelite surface,changing hydrophobicity and making it more likely to emerge from the pulp. 展开更多
关键词 Hydroxamic acid CIHA flotation SCHEELITE
下载PDF
Effect of dissolved components of malachite and calcite on surface properties and flotation behavior 被引量:1
16
作者 Zhihao Shen Shuming Wen +4 位作者 Han Wang Yongchao Miao Xiao Wang Shengbing Meng Qicheng Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1297-1309,共13页
In general,malachite is recovered via sulfidization–xanthate flotation,although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite.This phenomenon occurs b... In general,malachite is recovered via sulfidization–xanthate flotation,although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite.This phenomenon occurs because the dissolved components of malachite and calcite affect the flotation behavior of both minerals.In this study,the effect of the dissolved components derived from malachite and calcite on the flotation behavior and surface characteristics of both minerals was investigated.Flotation tests indicated that malachite recovery decreased when the calcite supernatant was introduced,while the presence of the malachite supernatant increased the recovery of calcite.Dissolution and adsorption tests,along with zeta potential measurements,X-ray photoelectron spectroscopy,Fourier transform infrared spectrometry,and timeof-flight secondary ion mass spectrometry demonstrated that the Ca species in the calcite supernatant were adsorbed on the malachite surface,which hindered the interaction of Na2S with malachite,thereby resulting in the insufficient adsorption of sodium isoamyl xanthate(NaIX)on the surface of malachite.By contrast,the Cu species in the malachite supernatant were adsorbed on the calcite surface,and they provided active sites for the subsequent adsorption of Na_(2)S and NaIX. 展开更多
关键词 MALACHITE CALCITE dissolved components sulfidization-xanthate flotation surface properties
下载PDF
Effect of ammonium sulfate on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation
17
作者 Xi Zhang Yu Wang +5 位作者 Jiushuai Deng Zhongyi Bai Hongxiang Xu Qingfeng Meng Da Jin Zhenwu Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2147-2156,共10页
Effectively strengthening the surface sulfidation is essential for recovering hemimorphite by froth flotation.In this work,inductively coupled plasma optical emission spectrometer(ICP-OES)measurements,Visual MINTEQ ca... Effectively strengthening the surface sulfidation is essential for recovering hemimorphite by froth flotation.In this work,inductively coupled plasma optical emission spectrometer(ICP-OES)measurements,Visual MINTEQ calculation,X-ray photoelectron spectroscopy(XPS)analysis,time of flight secondary ion mass spectrometry(ToF-SIMS)analysis,and micro-flotation experiments were explored to systematically investigate the effect of ammonium sulfate((NH_(4))_(2)SO_(4))on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation.The results showed that(NH_(4))_(2)SO_(4)exhibited a positive influence on hemimorphite sulfidation flotation.It was ascribed to the number of zinc components in the form of Zn^(2+)and[Zn(NH_(3))_(i)]^(2+)(i=1–4)increased in the flotation system after hemimorphite treatment with(NH_(4))_(2)SO_(4),which was beneficial to its interaction with sulfur species in solution,resulting in a dense and stable zinc sulfide layer generated on the hemimorphite surface.[Zn(NH_(3))_(i)]^(2+)participated in the sulfidation reaction of hemimorphite as a transition state.In addition the sulfidation reaction of hemimorphite was accelerated by(NH_(4))_(2)SO_(4).Thus,(NH_(4))_(2)SO_(4)presents a vital role in promoting the sulfidation of hemimorphite. 展开更多
关键词 HEMIMORPHITE SULFIDATION ammonium sulfate zinc sulfide species ADSORPTION flotation
下载PDF
Flotation separation of wolframite from calcite using a new trisiloxane surfactant as collector
18
作者 Shuyi Shuai Zhiqiang Huang +10 位作者 Vladimir E.Burov Vladimir Z.Poilov Fangxu Li Hongling Wang Rukuan Liu Shiyong Zhang Chen Cheng Wenyuan Li Xinyang Yu Guichun He Weng Fu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期379-387,共9页
Since wolframite is usually associated with calcite,the separation and enrichment of wolframite by froth flotation remains a great challenge.Herein,a novel trisiloxane surfactant N-(2-aminoethyl)-3-ami nopropyltrisilo... Since wolframite is usually associated with calcite,the separation and enrichment of wolframite by froth flotation remains a great challenge.Herein,a novel trisiloxane surfactant N-(2-aminoethyl)-3-ami nopropyltrisiloxane(AATS)was successful synthesized,which was used for the separation of wolframite from calcite for the first time.The flotation separation performance of AATS was studied by flotation test,and its adsorption mechanism was explored based on contact angle,infrared spectrum analysis(FTIR),zeta potential and density functional theory(DFT)calculation.The results of microflotation test and binary mixed ore flotation test pointed that AATS had excellent selectivity and more prominent collection capacity for the flotation of wolframite when compared with industrial reagent sodium oleate(NaOL).The measurement results of contact angle proved that AATS improved the hydrophobicity of the wolframite surface.The highly selective adsorption mechanism of AATS surfactant on mineral surfaces were further researched and analyzed by FTIR and zeta potential.The results revealed that AATS surfactant had significant adsorption effect on wolframite,yet almost no adsorption on calcite.DFT calculation indicated that AATS produced electrostatic adsorption with wolframite surface through—N+H3 group. 展开更多
关键词 flotation WOLFRAMITE CALCITE Trisiloxane surfactant ADSORPTION
下载PDF
Selective flotation of chalcopyrite from pyrite via seawater oxidation pretreatment
19
作者 Wanqing Li Yubiao Li +2 位作者 Zhonghong Wang Xu Yang Wen Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1289-1300,共12页
The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-de... The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-depressant flotation separation of chalcopyrite from pyrite,as an effective and environmentally friendly strategy.Without the addition of depressants,seawater oxidation for 3 d effectively depressed pyrite flotation,with the highest recovery difference greater than 70%and a selectivity index greater than 6 between chalcopyrite and pyrite.The surface investigation showed that pyrite surface was more readily oxidized to form hydrophilic Fe oxidants/oxyhydroxides,as compared to that of chalcopyrite.Further UV-visible spectrophotometer and Fourier transform infrared spectrum(FTIR)results indicated that xanthate was less adsorbed onto the treated pyrite surface,resulting in un-floatable particles.Chalcopyrite surface was changed slightly due to seawater oxidation,thereby insignificantly affecting its flotation.The coordination theory was further used to reveal the combination mechanisms between xanthate and pyrite or chalcopyrite.This study therefore provides a promising strategy to effectively separate chalcopyrite from pyrite,especially in the freshwater-deficient area. 展开更多
关键词 Seawater oxidation CHALCOPYRITE PYRITE Non-depressant flotation The coordination theory
下载PDF
Boron separation by adsorption and flotation with Mg-Al-LDHs and SDBS from aqueous solution
20
作者 Chun Bai Huifang Zhang +5 位作者 Qinglong Luo Xiushen Ye Haining Liu Quan Li Jun Li Zhijian Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期192-200,共9页
Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,th... Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,three types of Mg-Al-LDHs including Mg-Al-LDH(NO_(3)^(-)),Mg-Al-LDH(Cl^(-))and Mg-Al-LDH(SO_(4)^(2-))were applied to adsorb boron,and moreover sodium dodecylbenzenesulfonate(SDBS)was used to float the LDH particles from aqueous solution after boron adsorption.The results showed that 60 min was sufficient for the equilibrium adsorption of the three LDHs.The boron adsorption capacity of three LDHs was determined as follows:Mg-Al-LDH(NO_(3)^(-))>Mg-Al-LDH(Cl^(-))>Mg-Al-LDH(SO_(4)^(2-)),and was 2.0,0.98 and 0.2 mmol·g^(-1),each ranging from 0 to 80 mmol·L^(-1)with the initial boron concentration.The efficiency of boron removal by Mg-Al-LDH(NO_(3)^(-))and SDBS can reach up to 89.7%.Furthermore,the boron flotation mechanism of SDBS and LDHs has been studied,since SDBS as a flotation agent can react with LDHs and penetrate into the interlayer of LDHs in addition to electrostatic attraction.Therefore,LDHs in solution can be floated onto the foam layer to be separated from the solution,and the clarified solution was obtained.The method is simple and promising for boron removal from aqueous solution. 展开更多
关键词 BORON SEPARATION ADSORPTION flotation Layered double hydroxide Sodium dodecyl benzene sulfonate
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部