Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in bo...Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes. The cross sectional vortex was also analyzed. The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m 3 /h, the flow velocity ranges from 0 to 0.68 m/s. The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input. In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column. The tangential component of the velocity plays a defining role in the cross section. In the longitudinal section the velocity ranges from 0 to 0.08 m/s. The flow velocity increases as does the circulating volume. Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section.展开更多
The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measure...The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.展开更多
The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This ...The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This paper established a geometric model based on the high-pressure hydrate slurry experimental loop.The model was used to carry out simulation research on the flow characteristics of gas-liquid-solid three-phase flow.The specific research is as follows:Firstly,the effects of factors such as slurry flow velocity,hydrate particle density,hydrate particle size,and hydrate volume fraction on the stratified smooth flow were specifically studied.Orthogonal test obtained particle size has the most influence on the particle concentration distribution.The slurry flow velocity is gradually increased based on stratified smooth flow.Various flow patterns were observed and their characteristics were analyzed.Secondly,increasing the slurry velocity to 2 m/s could achieve the slurry flow pattern of partial hydrate in the pipeline transition from stratified smooth flow to wavy flow.When the flow rate increases to 3 m/s,a violent wave forms throughout the entire loop.Based on wave flow,as the velocity increased to 4 m/s,and the flow pattern changed to slug flow.When the particle concentration was below 10%,the increase of the concentration would aggravate the slug flow trend;if the particle concentration was above 10%,the increase of the concentration would weaken the slug flow trend,the increase of particle density and liquid viscosity would weaken the tendency of slug flow.The relationship between the pressure drop gradients of several different flow patterns is:slug flow>wave flow>stratified smooth flow.展开更多
An improved CFD model of gas flow and particle interception in a fiber material which fiber size is Y-shape was developed in this work. The porous medium model was used to build the model of the whole size of fiber fi...An improved CFD model of gas flow and particle interception in a fiber material which fiber size is Y-shape was developed in this work. The porous medium model was used to build the model of the whole size of fiber filter medium. Mixture model was adopted. The algorithm of particle interception in the whole size of fiber filter medium was derived and UDF(User Defined Function) that described kinds of particle filtering mechanisms in filter fibrous media was added to the Fluent default conservation equation as source term for simulation. The inertial resistance of the filter was taken into consideration, which provided a more precise measurement of the smoke flow and the particle interception in the filter under higher smoke speed conditions. The commercial software, Fluent 6.3, was used to simulate the smoke flow and particle interception in the filter in a single suction. The velocity and pressure profiles of smoke or nicotine particle in the filter, as well as nicotine particle volume fraction profile were well simulated. Finally, the comparisons of nicotine particle filtration efficiency between Fluent simulation results in this work and experimental results, as well as the model prediction in the literature were made to validate the simulation model. The comparisons showed that the particle entrapment model from simulation results was in good agreement with that from the experimental results. In addition, the Fluent simulation results are closer to reality both at the beginning and the end of the smoke process comparing with the model predicted results in the literature.展开更多
By using the mesh resolution control method based on the nozzle scale,a paralleled super numerical simulation and high-quality mesh model of the launch jet dynamics for new-generation launch vehicles was developed.Bas...By using the mesh resolution control method based on the nozzle scale,a paralleled super numerical simulation and high-quality mesh model of the launch jet dynamics for new-generation launch vehicles was developed.Based upon this,a transient numerical simulation method,combining the pressure and velocity,tightly coupled algorithm and SST turbulence model,was used to complete the unsteady numerical simulation of the launch jet dynamics of the new-generation launch vehicles.The numerical simulation results of the launch jet dynamics,for the new-generation launch vehicles,demonstrated that despite the complex structure of the launch platform,the jet flows of the core stage and booster engines were generally smoothly channeled into the double deflecting trench through the launch platform’s diversion hole at the initial stage of ignition.After the lift off,the jet flows of the core stage and the booster engines began to affect and ablate the grillage-shaped beam and the adjoined surface of the launch platform adjacent to the booster engines.At a higher altitude after lift off,it could be seen for the new-generation launch vehicles the ablation range of high temperature and high-speed jet flows on the launch platform further expanded,which would have a severe ablation effect on the fuel filling tower near the booster engines and even all the support arms.The numerical simulation of launch jet dynamics also established that the jet flows embers at the bottom of the core stage rocket body continued to be affected for an extended period of time due to the large number of nozzles in the new-generation launch vehicles engine and the weak suction effect of the jet flows in the core-stage engines.展开更多
基金the State Key Basic Research Program of China (No. 2012CB214905)Key Program of National Natural Science Foundation of China (No. 500834006)the National Natural Science Foundation of China (No. 50974119) for financial support
文摘Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes. The cross sectional vortex was also analyzed. The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m 3 /h, the flow velocity ranges from 0 to 0.68 m/s. The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input. In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column. The tangential component of the velocity plays a defining role in the cross section. In the longitudinal section the velocity ranges from 0 to 0.08 m/s. The flow velocity increases as does the circulating volume. Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section.
基金Supported by the National Natural Science Foundation of China (20476073), the State Key Laboratory of Chemical Engineering (SKL-ChE-08B03) and the Programs of Introducing Talents of Discipline to Universities 0306006).
文摘The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.
基金supported by the National Natural Science Foundation of China(Grant No.52274061&52004039&51974037)China Postdoctoral Science Foundation(Grant No.2023T160717&2021M693908)+1 种基金The major project of universities affiliated to Jiangsu Province basic science(natural science)research(Grant No.21KJA440001)Jiangsu Qinglan Project,Changzhou Longcheng Talent Plan-Youth Science and Technology Talent Recruitment Project.
文摘The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This paper established a geometric model based on the high-pressure hydrate slurry experimental loop.The model was used to carry out simulation research on the flow characteristics of gas-liquid-solid three-phase flow.The specific research is as follows:Firstly,the effects of factors such as slurry flow velocity,hydrate particle density,hydrate particle size,and hydrate volume fraction on the stratified smooth flow were specifically studied.Orthogonal test obtained particle size has the most influence on the particle concentration distribution.The slurry flow velocity is gradually increased based on stratified smooth flow.Various flow patterns were observed and their characteristics were analyzed.Secondly,increasing the slurry velocity to 2 m/s could achieve the slurry flow pattern of partial hydrate in the pipeline transition from stratified smooth flow to wavy flow.When the flow rate increases to 3 m/s,a violent wave forms throughout the entire loop.Based on wave flow,as the velocity increased to 4 m/s,and the flow pattern changed to slug flow.When the particle concentration was below 10%,the increase of the concentration would aggravate the slug flow trend;if the particle concentration was above 10%,the increase of the concentration would weaken the slug flow trend,the increase of particle density and liquid viscosity would weaken the tendency of slug flow.The relationship between the pressure drop gradients of several different flow patterns is:slug flow>wave flow>stratified smooth flow.
基金Supported by Technology Center,China Tobacco Hunan Industrial Co.,Ltd.(KY2014KF0002)the National Natural Science Foundation of China(21536003)+2 种基金Innovative Research Team Development Plan-Ministry of Education of China(IRT1238)Key project of international®ional scientific and technology plan(2014WK2037)China Outstanding Engineer Training Plan for Students of Chemical Engineering&Technology in Hunan University(2011-40)
文摘An improved CFD model of gas flow and particle interception in a fiber material which fiber size is Y-shape was developed in this work. The porous medium model was used to build the model of the whole size of fiber filter medium. Mixture model was adopted. The algorithm of particle interception in the whole size of fiber filter medium was derived and UDF(User Defined Function) that described kinds of particle filtering mechanisms in filter fibrous media was added to the Fluent default conservation equation as source term for simulation. The inertial resistance of the filter was taken into consideration, which provided a more precise measurement of the smoke flow and the particle interception in the filter under higher smoke speed conditions. The commercial software, Fluent 6.3, was used to simulate the smoke flow and particle interception in the filter in a single suction. The velocity and pressure profiles of smoke or nicotine particle in the filter, as well as nicotine particle volume fraction profile were well simulated. Finally, the comparisons of nicotine particle filtration efficiency between Fluent simulation results in this work and experimental results, as well as the model prediction in the literature were made to validate the simulation model. The comparisons showed that the particle entrapment model from simulation results was in good agreement with that from the experimental results. In addition, the Fluent simulation results are closer to reality both at the beginning and the end of the smoke process comparing with the model predicted results in the literature.
文摘By using the mesh resolution control method based on the nozzle scale,a paralleled super numerical simulation and high-quality mesh model of the launch jet dynamics for new-generation launch vehicles was developed.Based upon this,a transient numerical simulation method,combining the pressure and velocity,tightly coupled algorithm and SST turbulence model,was used to complete the unsteady numerical simulation of the launch jet dynamics of the new-generation launch vehicles.The numerical simulation results of the launch jet dynamics,for the new-generation launch vehicles,demonstrated that despite the complex structure of the launch platform,the jet flows of the core stage and booster engines were generally smoothly channeled into the double deflecting trench through the launch platform’s diversion hole at the initial stage of ignition.After the lift off,the jet flows of the core stage and the booster engines began to affect and ablate the grillage-shaped beam and the adjoined surface of the launch platform adjacent to the booster engines.At a higher altitude after lift off,it could be seen for the new-generation launch vehicles the ablation range of high temperature and high-speed jet flows on the launch platform further expanded,which would have a severe ablation effect on the fuel filling tower near the booster engines and even all the support arms.The numerical simulation of launch jet dynamics also established that the jet flows embers at the bottom of the core stage rocket body continued to be affected for an extended period of time due to the large number of nozzles in the new-generation launch vehicles engine and the weak suction effect of the jet flows in the core-stage engines.