期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Metabolic state oscillations in cerebral nuclei detected using two-photon fluorescence lifetime imaging microscopy
1
作者 Peng Zhou Jiawei Shen +4 位作者 Jun Liang Tian Xue Yuansheng Sun Longhua Zhang Changlin Tian 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期300-303,共4页
The fluorescence lifetime of nicotinamide adenine dinucleotide(NADH),a key endogenous coenzyme and metabolic biomarker,can reflect the metabolic state of cells.To implement metabolic imaging of brain tissue at high re... The fluorescence lifetime of nicotinamide adenine dinucleotide(NADH),a key endogenous coenzyme and metabolic biomarker,can reflect the metabolic state of cells.To implement metabolic imaging of brain tissue at high resolution,we assembled a two-photon fluorescence lifetime imaging microscopy(FLIM)platform and verified the feasibility and stability of NADH-based two-photon FLIM in paraformaldehydefixed mouse cerebral slices.Furthermore,NADH based metabolic state oscillation was observed in cerebral nuclei suprachiasmatic nucleus(SCN).The free NADH fraction displayed a relatively lower level in the daytime than at the onset of night,and an ultradian oscillation at night was observed.Through the combination of high-resolution imaging and immunostaining data,the metabolic tendency of different cell types was detected after the first two hours of the day and at night.Thus,two-photon FLIM analysis of NADH in paraformaldehyde-fixed cerebral slices provides a high-resolution and label-free method to explore the metabolic state of deep brain regions. 展开更多
关键词 NADH fluorescence lifetime imaging microscopy Brain metabolism Metabolic oscillation High resolution
原文传递
Layer-dependent signatures for exciton dynamics in monolayer and multilayer WSe2 revealed by fluorescence lifetime imaging measurement
2
作者 Yuanshuang Liu Huanglong Li +2 位作者 Cuicui Qiu Xiangmin Hu Dameng Liu 《Nano Research》 SCIE EI CAS CSCD 2020年第3期661-666,共6页
Two-dimensional(2D)transition-metal dichalcogenide(TMD)materials have aroused noticeable interest due to their distinguished electronic and optical properties.However,little is known about their complex exciton proper... Two-dimensional(2D)transition-metal dichalcogenide(TMD)materials have aroused noticeable interest due to their distinguished electronic and optical properties.However,little is known about their complex exciton properties together with the exciton dynamics process which have been expected to influence the performance of optoelectronic devices.The process of fluorescence can well reveal the process of exciton transition after excitation.In this work,the room-temperature layer-dependent exciton dynamics properties in layered WSe2 are investigated by the fluorescence lifetime imaging microscopy(FLIM)for the first time.This paper focuses on two mainly kinds of excitons including the direct transition neutral excitons and trions.Compared with the lifetime of neutral excitons(<0.3 ns within four-layer),trions possess a longer lifetime(~6.6 ns within four-layer)which increases with the number of layers.We attribute the longer-lived lifetime to the increasing number of trions as well as the varieties of trion configurations in thicker WSe2.Besides,the whole average lifetime increases over 10%when WSe2 flakes added up from monolayer to four-layer.This paper provides a novel tuneable layer-dependent method to control the exciton dynamics process and finds a relatively longer transition lifetime of trions at room temperature,enabling to investigate in the charge transport in TMD-based optoelectronics devices in the future. 展开更多
关键词 two-dimensional(2D)WSe2 exciton dynamics fluorescence lifetime fluorescence lifetime imaging microscopy(FLIM) density functional theory(DFT)
原文传递
NIR-Ⅱ Excitation and NIR-I Emission Based Two-photon Fluorescence Lifetime Microscopic Imaging Using Aggregation-induced Emission Dots 被引量:3
3
作者 LIU Wen ZHANG Yuhuang +2 位作者 QI Jj QIAN Jun TANG Ben Zhong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2021年第1期171-176,共6页
Near-infrared(NIR)lights are powerful tools to conduct deep-tissue imaging since NIR-Ⅰ wavelengths hold less photon absorption and NIR-Ⅱ wavelengths serve low photon scattering in the biological tissues compared wit... Near-infrared(NIR)lights are powerful tools to conduct deep-tissue imaging since NIR-Ⅰ wavelengths hold less photon absorption and NIR-Ⅱ wavelengths serve low photon scattering in the biological tissues compared with visible lights.Two-photon fluorescence lifetime microscopy(2PFLM)can utilize NIR-Ⅱ excitation and NIR-Ⅰ emission at the same time with the assistance of a well-designed fluorescent agent.Aggregation induced emission(AIE)dyes are famous for unique optical properties and could serve a large two-photon absorption(2PA)cross-section as aggregated dots.Herein,we report two-photon fluorescence lifetime microscopic imaging with NIR-Ⅱ excitation and NIR-Ⅰ emission using a novel deep-red AIE dye.The AIE-gens held a 2PA cross-section as large as 1.61×10^(4)GM at 1040 nm.Prepared AIE dots had a two-photon fluorescence peak at 790 nm and a stable lifetime of 2.2 ns under the excitation of 1040 nm femtosecond laser.The brain vessels of a living mouse were vividly reconstructed with the two-photon fluorescence lifetime information obtained by our home-made 2PFLM system.Abundant vessels as small as 3.17µm were still observed with a nice signal-background ratio at the depth of 750µm.Our work will inspire more insight into the improvement of the working wavelength of fluorescent agents and traditional 2PFLM. 展开更多
关键词 NEAR-INFRARED Brain imaging Aggregation-induced emission Two-photon fluorescence lifetime microscopic imaging
原文传递
A near-infrared plasma membrane-specific AIE probe for fluorescence lifetime imaging of phagocytosis 被引量:1
4
作者 Ming-Yu Wu Jong-Kai Leung +5 位作者 Chuen Kam Tsu Yu Chou Jia-Li Wang Xueqian Zhao Shun Feng Sijie Chen 《Science China Chemistry》 SCIE EI CSCD 2022年第5期979-988,共10页
Phagocytosis is a biological process that plays a key role in host defense and tissue homeostasis.Efficient approaches for real-time imaging of phagocytosis are highly desired but limited.Herein,an AIE-active near-inf... Phagocytosis is a biological process that plays a key role in host defense and tissue homeostasis.Efficient approaches for real-time imaging of phagocytosis are highly desired but limited.Herein,an AIE-active near-infrared fluorescent probe,named TBTCP,was developed for fluorescence lifetime imaging of phagocytosis.TBTCP could selectively label the cell plasma membrane with fast staining,wash-free process,high signal-to-background ratio,and excellent photostability.Cellular membrane statuses under different osmolarities as well as macrophage phagocytosis of bacteria or large silica particles in early stages could be reported by the fluorescence lifetime changes of TBTCP.Compared with current fluorescence imaging methods,which target the bioenvironmental changes in the late phagocytosis stage,this approach detects the changes in the cell membrane,thus giving a faster response to phagocytosis.This article provides a functional tool to report the phagocytic dynamics of macrophages which may greatly contribute to the studies of phagocytic function-related diseases. 展开更多
关键词 fluorescence lifetime imaging PHAGOCYTOSIS plasma membrane aggregation-induced emission NEAR-INFRARED
原文传递
AgInS_(2)/ZnS quantum dots for noninvasive cervical cancer screening with intracellular pH sensing using fluorescence lifetime imaging microscopy
5
作者 Wenhua Su Dan Yang +7 位作者 Yulan Wang Yawei Kong Wanlu Zhang Jing Wang Yiyan Fei Ruiqian Guo Jiong Ma Lan Mi 《Nano Research》 SCIE EI CSCD 2022年第6期5193-5204,共12页
Intracellular pH plays a critical role in biological functions,and abnormal pH values are related to various diseases.Here,we report on an intracellular pH sensor AgInS_(2)(AIS)/ZnS quantum dots(QDs)that show long flu... Intracellular pH plays a critical role in biological functions,and abnormal pH values are related to various diseases.Here,we report on an intracellular pH sensor AgInS_(2)(AIS)/ZnS quantum dots(QDs)that show long fluorescence lifetimes of hundreds of nanoseconds and low toxicity.Fluorescence lifetime imaging microscopy(FLIM)combined with AIS/ZnS QDs is used for the imaging of live cells in different pH buffers and different cell lines.The FLIM images of AIS/ZnS QDs in live cells demonstrate different intracellular pH values in different regions,such as in lysosomes or cytoplasm.This method can also distinguish cancer cells from normal cells,and the fluorescence lifetime difference of the AIS/ZnS QDs between the two types of cells is 100±7 ns.Most importantly,the exfoliated cervical cells from 20 patients are investigated using FLIM combined with AIS/ZnS QDs.The lifetime difference value between the normal and cervical cancer(CC)groups is 115±9 ns,and the difference between the normal and the precancerous lesion group is 64±9 ns.For the first time,the noninvasive method has been used for cervical cancer screening,and it has shown great improvement in sensitivity compared with a clinical conventional cytology examination. 展开更多
关键词 AIS/ZnS quantum dots fluorescence lifetime imaging microscopy intracellular pH sensing cervical cancer screening NONINVASIVE
原文传递
Deep-UV fluorescence lifetime imaging microscopy
6
作者 Christiaan J.de Jong Alireza Lajevardipour +6 位作者 Mindaugas Gecevicius Martynas Beresna Gediminas Gervinskas Peter G.Kazansky Yves Bellouard Andrew H.A.Clayton Saulius Juodkazis 《Photonics Research》 SCIE EI 2015年第5期283-288,共6页
A novel fluorescence lifetime imaging microscopy(FLIM) working with deep UV 240–280 nm wavelength excitations has been developed. UV-FLIM is used for measurement of defect-related fluorescence and its changes upon an... A novel fluorescence lifetime imaging microscopy(FLIM) working with deep UV 240–280 nm wavelength excitations has been developed. UV-FLIM is used for measurement of defect-related fluorescence and its changes upon annealing from femtosecond laser-induced modifications in fused silica. This FLIM technique can be used with microfluidic and biosamples to characterize temporal characteristics of fluorescence upon UV excitation, a capability easily added to a standard microscope-based FLIM. UV-FLIM was tested to show annealing of the defects induced by silica structuring with ultrashort laser pulses. Frequency-domain fluorescence measurements were converted into the time domain to extract long fluorescence lifetimes from defects in silica. 展开更多
关键词 UV Deep-UV fluorescence lifetime imaging microscopy
原文传递
Molecular fluorescence significantly enhanced by gold nanoparticles@zeolitic imidazolate framework-8
7
作者 张钰伊 卞亚杰 +5 位作者 张炜 刘易婷 张晓磊 陈梦迪 胡炳文 金庆原 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期462-470,共9页
Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to m... Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications. 展开更多
关键词 ZIF-8 gold nanoparticles fluorescence spectra fluorescence lifetime
原文传递
Enhancement of rapid lifetime determination for time-resolved fluorescence imaging in forensic examination 被引量:2
8
作者 钟鑫 王新伟 +1 位作者 孙亮 周燕 《Chinese Optics Letters》 SCIE EI CAS CSCD 2021年第4期7-11,共5页
An enhancement method of rapid lifetime determination is proposed for time-resolved fluorescence imaging to discriminate substances with approximate fluorescence lifetime in forensic examination. In the method, an ima... An enhancement method of rapid lifetime determination is proposed for time-resolved fluorescence imaging to discriminate substances with approximate fluorescence lifetime in forensic examination. In the method, an image-exclusive-OR treatment with filter threshold adaptively chosen is presented to extract the region of interest from dual-gated fluorescence intensity images, and then the fluorescence lifetime image is reconstructed based on the rapid lifetime determination algorithm. Furthermore, a maximum and minimum threshold filtering is developed to automatically realize visualization enhancement of the lifetime image. In proof experiments, compared with traditional fluorescence intensity imaging and rapid lifetime determination method, the proposed method automatically distinguishes altered and obliterated documents written by two brands of highlighters with the same color and close fluorescence lifetime. 展开更多
关键词 time-resolved fluorescence imaging fluorescence lifetime image visualization enhancement dual-gated intensity-correlation forensic examination
原文传递
FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring 被引量:1
9
作者 Yuzhen Ouyang Yanping Liu +2 位作者 Zhiming MWang Zongwen Liu Minghua Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期48-74,共27页
Fluorescence lifetime imaging microscopy(FLIM)has been rapidly developed over the past 30 years and widely applied in biomedical engineering.Recent progress in fluorophore-dyed probe design has widened the application... Fluorescence lifetime imaging microscopy(FLIM)has been rapidly developed over the past 30 years and widely applied in biomedical engineering.Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence.Because fluorescence lifetime is sensitive to microenvironments and molecule alterations,FLIM is promising for the detection of pathological conditions.Current cancer-related FLIM applications can be divided into three main categories:(i)FLIM with autofluorescence molecules in or out of a cell,especially with reduced form of nicotinamide adenine dinucleotide,and flavin adenine dinucleotide for cellular metabolism research;(ii)FLIM with Förster resonance energy transfer for monitoring protein interactions;and(iii)FLIM with fluorophore-dyed probes for specific aberration detection.Advancements in nanomaterial production and efficient calculation systems,as well as novel cancer biomarker discoveries,have promoted FLIM optimization,offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring.This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development.We also highlight current challenges and provide perspectives for further investigation. 展开更多
关键词 fluorescence lifetime imaging microscopy Förster resonance energy transfer Reduced form of nicotinamide adenine dinucleotide Biosensors CANCER
下载PDF
Optical Properties of Chiral Azo-Schiff Base Mn(II) and Zn(II) Complexes with Silver Nanoparticles
10
作者 Kazuya Saiga Tomoyuki Haraguchi +6 位作者 Yasutaka Kitahama Takuya Hosokai Hiroyuki Matsuzaki Dohyun Moon Mutsumi Sugiyama Michikazu Hara Takashiro Akitsu 《Journal of Materials Science and Chemical Engineering》 2021年第4期1-10,共10页
<div style="text-align:justify;"> Herein we have originally designed chiral azo-salen Mn(II) and Zn(II) complexes for interacting silver nanoparticles (AgNPs) exhibiting localized surface plasmon reson... <div style="text-align:justify;"> Herein we have originally designed chiral azo-salen Mn(II) and Zn(II) complexes for interacting silver nanoparticles (AgNPs) exhibiting localized surface plasmon resonance (LSPR). Understanding excited state and reaction intermediate during light irradiation to return to ground state may be important for such composite systems. Therefore, we investigated such optical properties for systems using time-resolved luminescence and transient absorption measurements. DMSO solutions of the four newly prepared and characterized complexes (<strong>MMn</strong><strong>, MZn, CMn,</strong> and <strong>CZn</strong>) and ethanol solutions of the composite materials of each complex with AgNPs were served for optical measurements. The time-correlated single photon counting (TCSPC), the streak camera which is much shorter period of time than TCSPC and transient absorption measurement, was performed for the eight samples. The fluorescence lifetime of the sole complexes and the composite materials with AgNPs was derived from curve-fitting analysis of luminescence decay curves of TCSPC. Lifetime of the composite systems with AgNPs was longer than that of the corresponding sole metal complexes for three cases. It was revealed that composite systems may go through three reaction intermediates during relaxation from excited state to ground state. </div> 展开更多
关键词 Schiff Base Metal Complexes AZOBENZENE Silver Nanoparticles fluorescence lifetime
下载PDF
Compact and effective photon-resolved image scanning microscope
11
作者 Giorgio Tortarolo Alessandro Zunino +5 位作者 Simonluca Piazza Mattia Donato Sabrina Zappone Agnieszka Pierzyńska-Mach Marco Castello Giuseppe Vicidomini 《Advanced Photonics》 SCIE EI CAS CSCD 2024年第1期84-95,共12页
Fluorescence confocal laser-scanning microscopy(LSM)is one of the most popular tools for life science research.This popularity is expected to grow thanks to single-photon array detectors tailored for LSM.These detecto... Fluorescence confocal laser-scanning microscopy(LSM)is one of the most popular tools for life science research.This popularity is expected to grow thanks to single-photon array detectors tailored for LSM.These detectors offer unique single-photon spatiotemporal information,opening new perspectives for gentle and quantitative superresolution imaging.However,a flawless recording of this information poses significant challenges for the microscope data acquisition(DAQ)system.We present a DAQ module based on the digital frequency domain principle,able to record essential spatial and temporal features of photons.We use this module to extend the capabilities of established imaging techniques based on single-photon avalanche diode(SPAD)array detectors,such as fluorescence lifetime image scanning microscopy.Furthermore,we use the module to introduce a robust multispecies approach encoding the fluorophore excitation spectra in the time domain.Finally,we combine time-resolved stimulated emission depletion microscopy with image scanning microscopy,boosting spatial resolution.Our results demonstrate how a conventional fluorescence laser scanning microscope can transform into a simple,information-rich,superresolved imaging system with the simple addition of a SPAD array detector with a tailored data acquisition system.We expected a blooming of advanced single-photon imaging techniques,which effectively harness all the sample information encoded in each photon. 展开更多
关键词 fluorescence lifetime image scanning microscopy digital frequency domain single photon
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部