期刊文献+
共找到32,829篇文章
< 1 2 250 >
每页显示 20 50 100
Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding 被引量:1
1
作者 Jianming Yang Hu Wang +2 位作者 Yali Zhang Hexin Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期273-286,共14页
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th... The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment. 展开更多
关键词 Electromagnetic interference shielding Layered structure Supercritical carbon dioxide foaming Poly(butyleneadipateco-terephthalate) MICROCELLULAR
下载PDF
Liquid injectivity in a SAG foam process:Effect of permeability
2
作者 Jia-Kun Gong Yuan Wang +4 位作者 Ridhwan-Zhafri B.Kamarul Bahrim Raj-Deo Tewari Mohammad-Iqbal Mahamad Amir Rouhi Farajzadeh William Rossen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期302-314,共13页
Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in fa... Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in facilities.Our previous studies with similar permeability cores show that during SAG injection,several banks occupy the area near the well where fluid exhibits distinct behaviour.However,underground reservoirs are heterogeneous,often layered.It is crucial to understand the effect of permeability on fluid behaviour and injectivity in a SAG process.In this work,coreflood experiments are conducted in cores with permeabilities ranging from 16 to 2300 mD.We observe the same sequence of banks in cores with different permeabilities.However,the speed at which banks propagate and their overall mobility can vary depending on permeability.At higher permeabilities,the gas-dissolution bank and the forced-imbibition bank progress more rapidly during liquid injection.The total mobilities of both banks decrease with permeability.By utilizing a bank-propagation model,we scale up our experimental findings and compare them to results obtained using the Peaceman equation.Our findings reveal that the liquid injectivity in a SAG foam process is misestimated by conventional simulators based on the Peaceman equation.The lower the formation permeability,the greater the error. 展开更多
关键词 foam Enhanced oil recovery Surfactant-alternating-gas INJECTIVITY PERMEABILITY
下载PDF
Propagation Properties of Shock Waves in Polyurethane Foam based on Atomistic Simulations
3
作者 Zhiqiang Hu Jianli Shao +2 位作者 Shiyu Jia Weidong Song Cheng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros... Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock. 展开更多
关键词 Polyurethane foam Shock wave ATTENUATION Atomistic simulation
下载PDF
An efficient and mild recycling of waste melamine formaldehyde foams by alkaline hydrolysis
4
作者 Shaodi Wu Ning Zhang +7 位作者 Chizhou Wang Xianglin Hou Jie Zhao Shiyu Jia Jiancheng Zhao Xiaojing Cui Haibo Jin Tiansheng Deng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期919-926,共8页
Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditi... Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF. 展开更多
关键词 Melamine formaldehyde foam Degradation Alkaline hydrolysis RECYCLING
下载PDF
Experimental investigation of the effects of oil asphaltene content on CO_(2) foam stability in the presence of nanoparticles and sodium dodecyl sulfate
5
作者 SADEGHI Hossein KHAZ'ALI Ali Reza MOHAMMADI Mohsen 《Petroleum Exploration and Development》 SCIE 2024年第1期239-250,共12页
Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechani... Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechanism of foam stability reduction in the presence of asphaltene was analyzed by scanning electron microscope(SEM),UV adsorption spectrophotometric concentration measurement and Zeta potential measurement.When the mass ratio of synthetic oil to foam-formation suspension was 1:9 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 751 s to 239 s,and the half-life of SDS/silica-stabilized foams decreased from 912 s to 298 s.When the mass ratio of synthetic oil to foam-formation suspension was 2:8 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 526 s to 171 s,and the half-life of SDS/silica-stabilized foams decreased from 660 s to 205 s.In addition,due to asphaltene-SDS/silica interaction in the aqueous phase,the absolute value of Zeta potential decreases,and the surface charges of particles reduce,leading to the reduction of repulsive forces between two interfaces of thin liquid film,which in turn,damages the foam stability. 展开更多
关键词 CO_(2)foam foam stability ASPHALTENE silica nanoparticle sodium dodecyl sulfate(SDS) repulsive forces surface charges Zeta potential
下载PDF
Experimental investigation on weak shock wave mitigation characteristics of flexible polyurethane foam and polyurea
6
作者 Shiyu Jia Cheng Wang +2 位作者 Wenlong Xu Dong Ma Fangfang Qi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期179-191,共13页
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse... In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density. 展开更多
关键词 Free-field explosion Weak shock wave mitigation POLYUREA Polyurethane foam Multi-layered composites
下载PDF
Ash removal from inferior coal via ammonium fluoride roasting and simultaneous yield of white carbon black
7
作者 Xuqin Duan Shuaiyu Lu +3 位作者 Yuxiao Fu Jiazhe Zhang Tong Liu Jian Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期261-279,共19页
The quality upgrading and deashing of inferior coal by chemical method still faces great challenges.The dangers of strong acid,strong alkali,waste water and exhaust gas as well as high cost limit its industrial produc... The quality upgrading and deashing of inferior coal by chemical method still faces great challenges.The dangers of strong acid,strong alkali,waste water and exhaust gas as well as high cost limit its industrial production.This paper systematically investigates the ash reduction and desilicification of two typical inferior coal utilizing ammonium fluoride roasting method.Under the optimal conditions,for fat coal and gas coal,the deashing rates are 69.02%and 54.13%,and the desilicification rates are 92.64%and 90.27%,respectively.The molar dosage of ammonium fluoride remains consistent for both coals;however,the gas coal,characterized by a lower ash and silica content(less than half that of the fat coal),achieves optimum deashing effect at a reduced time and temperature.The majority of silicon in coal transforms into gaseous ammonium fluorosilicate,subsequently preparing nanoscale amorphous silica with a purity of 99.90%through ammonia precipitation.Most of the fluorine in deashed coal are assigned in inorganic minerals,suggesting the possibility of further fluorine and ash removal via flotation.This research provides a green and facile route to deash inferior coal and produce nano-scale white carbon black simultaneously. 展开更多
关键词 Inferior coal Deashing treatment Silicon recycling Ammonium fluoride roasting White carbon black
下载PDF
Experimental study on workability and permeability of sandy soils conditioned with thickened foam
8
作者 Zhiyao Feng Shuying Wang +2 位作者 Tongming Qu Xiangcou Zheng Fanlin Ling 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期532-544,共13页
Water spewing and muck plugging often occur during earth pressure balance(EPB)shield machines tunnelling in water-rich sandy strata,even though the conventional foam has been employed to condition sandy soils.In this ... Water spewing and muck plugging often occur during earth pressure balance(EPB)shield machines tunnelling in water-rich sandy strata,even though the conventional foam has been employed to condition sandy soils.In this study,a novel thickened foaming agent suitable for EPB shield tunnelling in water-rich sandy strata is developed.In contrast to conventional foam-conditioned sands,the thickened foam-conditioned sand has a low permeability due to the consistent filling of soil pores with the thickened foam,and the initial permeability coefficient decreases by approximately two orders of magnitude.It also exhibits a suitable workability,which is attributed to the enhanced capability of the thickened foam to condition sandy soils.In addition,the effect of concentration on the stability of the foam is explained by the Gibbs-Marangoni effect,and conditioning mechanisms for the thickened foam on sands are discussed from the evolution of foam bubbles. 展开更多
关键词 Earth pressure balance(EPB)shield Thickened foam foam-conditioned sand PERMEABILITY WORKABILITY
下载PDF
Electrokinetic-mechanism of water and furfural oxidation on pulsed laser-interlaced Cu_(2)O and CoO on nickel foam
9
作者 Yewon Oh Jayaraman Theerthagiri +3 位作者 M.L.Aruna Kumari Ahreum Min Cheol Joo Moon Myong Yong Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期145-154,共10页
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and... The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel. 展开更多
关键词 Pulsed laser irradiation in liquids Water and furfural oxidation In situ Raman spectroscopy CoO/NiO/nickel foam Cu_(2)O/Nio/nickel foam 2-furoic acid
下载PDF
Compression properties of cost-efficient porous expanded clay reinforced AA7075 syntactic foams fabricated by industrial-oriented die casting technology
10
作者 İsmail Cem Akgün Çağın Bolat Ali Gökşenli 《China Foundry》 SCIE EI CAS CSCD 2024年第1期60-70,共11页
In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollu... In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength. 展开更多
关键词 die casting porous materials metal matrix sytanctic foams expanded clay compressive deformation
下载PDF
Protective performance of shear stiffening gel-modified foam against ballistic impact:Experimental and numerical study
11
作者 Huan Tu Haowei Yang +9 位作者 Pengzhao Xu Zhe Yang Fan Tang Cheng Dong Yuchao Chen Lei Ren Wenjian Cao Chenguang Huang Yacong Guo Yanpeng Wei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期510-520,共11页
As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical org... As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical organs of the wear may suffer severe behind-armor blunt trauma(BABT)even though the impactor is stopped by the body armor.A type of novel composite material through incorporating shear stiffening gel(STG)into ethylene-vinyl acetate(EVA)foam is developed and used as buffer layers to reduce BABT.In this paper,the protective performance of body armors composed of fabric bulletproof layers and a buffer layer made of foam material is investigated both experimentally and numerically.The effectiveness of STG-modified EVA in damage relief is verified by ballistic tests.In parallel with the experimental study,numerical simulations are conducted by LS-DYNA®to investigate the dynamic response of each component and capture the key mechanical parameters,which are hardly obtained from field tests.To fully describe the material behavior under the transient impact,the selected constitutive models take the failure and strain rate effect into consideration.A good agreement between the experimental observations and numerical results is achieved to prove the validity of the modelling method.The tests and simulations show that the impact-induced deformation on the human body is significantly reduced by using STG-modified EVA as the buffering material.The improvement of protective performance is attributed to better dynamic properties and more outstanding energy absorption capability of the composite foam. 展开更多
关键词 Ballistic behavior Composite foam Shear stiffening gel Finite element analysis Protective mechanism
下载PDF
Enhanced Redox Electrocatalysis in High‑Entropy Perovskite Fluorides by Tailoring d–p Hybridization
12
作者 Xudong Li Zhuomin Qiang +4 位作者 Guokang Han Shuyun Guan Yang Zhao Shuaifeng Lou Yongming Zhu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期333-350,共18页
High-entropy catalysts featuring exceptional properties are,in no doubt,playing an increasingly significant role in aprotic lithium-oxygen batteries.Despite extensive effort devoted to tracing the origin of their unpa... High-entropy catalysts featuring exceptional properties are,in no doubt,playing an increasingly significant role in aprotic lithium-oxygen batteries.Despite extensive effort devoted to tracing the origin of their unparalleled performance,the relationships between multiple active sites and reaction intermediates are still obscure.Here,enlightened by theoretical screening,we tailor a high-entropy perovskite fluoride(KCoMnNiMgZnF_(3)-HEC)with various active sites to overcome the limitations of conventional catalysts in redox process.The entropy effect modulates the d-band center and d orbital occupancy of active centers,which optimizes the d–p hybridization between catalytic sites and key intermediates,enabling a moderate adsorption of LiO_(2)and thus reinforcing the reaction kinetics.As a result,the Li–O2 battery with KCoMnNiMgZnF_(3)-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability,preceding majority of traditional catalysts reported.These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst. 展开更多
关键词 Lithium-oxygen batteries KCoMnNiMgZnF_(3)-HEC perovskite fluoride Entropy effect Catalytic kinetics d-p orbital hybridization
下载PDF
Mechanism of Learning and Memory Impairment in Rats Exposed to Arsenic and/or Fluoride Based on Microbiome and Metabolome 被引量:2
13
作者 ZHANG Xiao Li YU Sheng Nan +12 位作者 QU Ruo Di ZHAO Qiu Yi PAN Wei Zhe CHEN Xu Shen ZHANG Qian LIU Yan LI Jia GAO Yi LYU Yi YAN Xiao Yan LI Ben REN Xue Feng QIU Yu Lan 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2023年第3期253-268,共16页
Objective Arsenic(As) and fluoride(F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, lead... Objective Arsenic(As) and fluoride(F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, leading to cognitive, learning, and memory impairments. However, early biomarkers of learning and memory impairment induced by As and/or F remain unclear. In the present study, the mechanisms by which As and/or F cause learning memory impairment are explored at the multi-omics level(microbiome and metabolome).Methods We stablished an SD rats model exposed to arsenic and/or fluoride from intrauterine to adult period.Results Arsenic and/fluoride exposed groups showed reduced neurobehavioral performance and lesions in the hippocampal CA1 region. 16S rRNA gene sequencing revealed that As and/or F exposure significantly altered the composition and diversity of the gut microbiome, featuring the Lachnospiraceae_NK4A136_group, Ruminococcus_1, Prevotellaceae_NK3B31_group, [Eubacterium]_xylanophilum_group. Metabolome analysis showed that As and/or F-induced learning and memory impairment may be related to tryptophan, lipoic acid, glutamate, gamma-aminobutyric acidergic(GABAergic) synapse, and arachidonic acid(AA) metabolism. The gut microbiota, metabolites, and learning memory indicators were significantly correlated.Conclusion Learning memory impairment triggered by As and/or F exposure may be mediated by different gut microbes and their associated metabolites. 展开更多
关键词 ARSENIC fluoridE Learning and memory impairment MICROBIOME METABOLOME
下载PDF
Highly Ordered Thermoplastic Polyurethane/Aramid Nanofiber Conductive Foams Modulated by Kevlar Polyanion for Piezoresistive Sensing and Electromagnetic Interference Shielding 被引量:4
14
作者 Kunpeng Qian Jianyu Zhou +4 位作者 Miao Miao Hongmin Wu Sineenat Thaiboonrod Jianhui Fang Xin Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期335-352,共18页
Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevla... Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces. 展开更多
关键词 Highly ordered conductive foams MXene NANOFIBER Thermoplastic Kevlar polyanion Piezoresistive sensing Electromagnetic interference shielding
下载PDF
The mechanism for tuning the corrosion resistance and pore density of plasma electrolytic oxidation(PEO)coatings on Mg alloy with fluoride addition 被引量:1
15
作者 Zhu Lujun Li Hongzhan +2 位作者 Ma Qingmei Lu Jiangbo Li Zhengxian 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2823-2832,共10页
Here we prepared PEO coatings on Mg alloys in silicate-NaOH-phosphate electrolyte containing different concentrations of NaF addition.The detailed microstructural characterizations combining with potentiodynamic polar... Here we prepared PEO coatings on Mg alloys in silicate-NaOH-phosphate electrolyte containing different concentrations of NaF addition.The detailed microstructural characterizations combining with potentiodynamic polarization and electrochemical impedance spectra(EIS)were employed to investigate the roles of fluoride in the growth and corrosion properties of PEO coating on Mg.The result shows the introduction of NaF led to a fluoride-containing nanolayer(FNL)formed at the Mg/coating interface.The FNL consists of MgO nanoparticles and insoluble MgF_(2)nanoparticles(containing rutile phase and cubic phase).The increase in the NaF concentration of the electrolyte increases the thickness and the MgF_(2)content in the FNL.When anodized in the electrolyte containing 2 g/L NaF,the formed FNL has the highest thickness of 100-200 nm along with the highest value of x of∼0.6 in(MgO)_(1-x)(MgF_(2))x resulted in the highest corrosion performance of PEO coating.In addition,when anodized in the electrolyte containing a low NaF concentration(0.4-0.8 g/L),the formed FNL was thin and discontinuous,which would decrease the pore density and increase the coating's uniformness simultaneously. 展开更多
关键词 Mg alloys Plasma electrolytic oxidation CORROSION Pore density fluoridE
下载PDF
Eco-friendly aqueous foam stabilized by cellulose microfibers with great salt tolerance and high temperature resistance
16
作者 Li-Li Yang Xian-Bo He +6 位作者 Yi-Xiu Cheng Guan-Cheng Jiang Ze-Yu Liu Shi-Bo Wang Shi-Xin Qiu Jian-Hua Wang Wei-Guo Tian 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2499-2511,共13页
A low-cost eco-friendly aqueous foam,especially the robust foam with great tolerance to high salinity and high temperature,is in great demand in the oil industry,e.g.,oil and gas well or geothermal well drilling.Herei... A low-cost eco-friendly aqueous foam,especially the robust foam with great tolerance to high salinity and high temperature,is in great demand in the oil industry,e.g.,oil and gas well or geothermal well drilling.Herein,an ultra-stable aqueous foam was developed using the biodegradable cellulose microfiber(CMF)as a foam stabilizer.The foam stabilized by CMF shows excellent tolerance to the high concentration of NaCl(6.0 wt%)and CaCl_(2)(0.25 wt%)and the related drainage half-life times(T_(0.5))reach 1750 and 2340 s respectively.By contrast,the foams without CMF are completely drained(T_(0.5)=0 s)when NaCl concentration is greater than 6.0 wt%or CaCl_(2) concentration is greater than 0.20 wt%.Notably,T0.5 of the foams stabilized by CMF at these saline concentrations still can maintain above 1000 s even after aging at 120℃ for 16 h,exhibiting an outstanding foam-stabilizing performance at high temperature.Experimental results suggest that the salt and high-temperature tolerance of CMF in foam stabilization is attributed to the electrically uncharged surfaces,the formation of a gel-like structure and the excellent thermal stability.This work not only provides a promising candidate of aqueous foam stabilizer to deal with high temperature and high salinity but also presents a natural-based solution for an environmentally friendly drilling industry in the future. 展开更多
关键词 Aqueous foam foam stabilizer Cellulose microfiber Salt tolerance Sustainable
下载PDF
Stability of high-salinity-enhanced foam:Surface behavior and thin-film drainage
17
作者 Lin Sun Xue-Hui Sun +6 位作者 Yong-Chang Zhang Jun Xin Hong-Ying Sun Yi-Bo Li Wan-Fen Pu Jin-Yu Tang Bing Wei 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2343-2353,共11页
Cocamidopropyl hydroxyl sulfobetaine(CHSB)is one of the most promising foaming agents for high-salinity reservoirs because the salt in place facilitates its foam stability,even with salinity as high as 2×10^(5)mg... Cocamidopropyl hydroxyl sulfobetaine(CHSB)is one of the most promising foaming agents for high-salinity reservoirs because the salt in place facilitates its foam stability,even with salinity as high as 2×10^(5)mg/L.However,the synergistic effects between CHSB and salt have not been fully understood.This study utilized bulk foam tests and thin-film interferometry to comprehensively investigate the macroscopic and microscopic decay processes of CHSB foams with NaCl concentrations ranging from 2.3×10^(4)to 2.1×10^(5)mg/L.We focused on the dilatational viscoelasticity and dynamic thin-film thickness to elucidate the high-salinity-enhanced foam stability.The increase in dilatational viscoelasticity and supramolecular oscillating structural force(Π_(OS))with salinity dominated the superior stability of CHSB foam.With increasing salinity,more CHSB molecules accumulated on the surface with a lower diffusion rate,leading to high dilatational moduli and surface elasticity,thus decelerating coarsening and coalescence.Meanwhile,the number density of micelles in the thin film increased with salinity,resulting in increasedΠOS.Consequently,the energy barrier for stepwise thinning intensified,and the thin-film drainage slowed.This work conduces to understand the mechanisms behind the pronounced stability of betaine foam and can promote the widespread application of foam in harsh reservoirs. 展开更多
关键词 High-salinity reservoirs Betaine foam foam stability Dilatational viscoelasticity Disjoining pressure Thin-film interferometry
下载PDF
Flow characteristics and regime transition of aqueous foams in porous media over a wide range of quality,velocity,and surfactant concentration
18
作者 Bin-Fei Li Meng-Yuan Zhang +3 位作者 Zhao-Min Li Anthony Kovscek Yan Xin Bo-Liang Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1044-1052,共9页
Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T... Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams. 展开更多
关键词 foam flow regime and transition Porous media Pressure gradient Flow velocity Surfactant concentration foam quality
下载PDF
Scalable and Heavy Foam Functionalization by Electrode-Inspired Sticky Jammed Fluids for Efficient Indoor Air-Quality Management
19
作者 Yuan Ji Lei Jing +4 位作者 Zhuxi Ni Bo Yin Mingbo Yang Wei Yang Yu Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期175-184,共10页
Functionalization of polymer foams by surface coating is of great interest for advanced flow-interactive materials working with well-controlled 3D open channels.However,realizing heavy functional coating via a fast an... Functionalization of polymer foams by surface coating is of great interest for advanced flow-interactive materials working with well-controlled 3D open channels.However,realizing heavy functional coating via a fast and recyclable way remains a big challenge.Here,inspired by the battery electrodes,we propose a scalable mechanic-assisted heavy coating strategy based on the design of sticky jammed fluid(SJF)to conquer the above challenge.Similar to the electrode slurry,the SJF is dominated by a high concentration of active material(≥20 wt%of active carbon,for instance)uniformly dispersed in a protein binder solution.Due to the sticky and solidrich nature of the SJF,one can realize a high coating efficiency of 60 wt%gain per coating.The critical factors controlling the coating processing and quality are further identified and discussed.Furthermore,the functionalized foam is demonstrated as a high-performance shape-customizable toxic gas remover,which can absorb formaldehyde very efficiently at different circumstances,including static adsorption,flow-based filtration,and source interception.Finally,the foam skeleton and the active materials are easily recycled by a facile solvent treatment.This study may inspire new scalable way for fast,heavy,and customizable functionalization of polymeric foams. 展开更多
关键词 air filtration conductive foam catalysis functional polymer foams microadhesion-guided technology surface coating and functionalization
下载PDF
Interaction of Foam and Microemulsion Components in Low-Tension-Gas Flooding
20
作者 Jing Zhao Jun Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1951-1961,共11页
Low-Tension-Foam(LTF)flooding is an emerging enhanced oil recovery technique for low-permeability carbonate reservoirs.Foam capacity is closely related to the salinity environment(or,equivalently,the phase behavior of... Low-Tension-Foam(LTF)flooding is an emerging enhanced oil recovery technique for low-permeability carbonate reservoirs.Foam capacity is closely related to the salinity environment(or,equivalently,the phase behavior of the oil/water/surfactant system).Therefore,the interactions between microemulsion and foam components are of primary importance in the LTF process.In this study,the phase behavior of an oil/water/surfactant system under equilibrium is analyzed,firstly by assuming perfect mixing.Meanwhile,the formation kinetics of microemulsion are monitored through a novel low-field NMR technique,which is able to provide quantitative assessment on the microemulsion evolution characteristics.Then,foam stability is examined in the absence and in the presence of Winsor-Ⅰ and Winsor-Ⅲ type microemulsions.It is revealed that foam stability depends on the oil solubilization(oil swollen micelle size).A decrease in the oil swollen micelle size and micellar structure effectiveness,in conjunction with an increasing salinity,leads to lower foam stability in the presence of a Winsor-Ⅲ type microemulsion. 展开更多
关键词 foam mobility control MICROEMULSION INJECTIVITY fluid flow
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部