期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Bioinspired superwetting surfaces for fog harvesting fabricated by picosecond laser direct ablation 被引量:1
1
作者 LI Wei-zhen CHU Dong-kai +3 位作者 QU Shuo-shuo YIN Kai HU Shuang-shuang YAO Peng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3368-3375,共8页
Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydropho... Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydrophobic(hydrophobic,superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing.Basically,after laser processing,the surfaces of stainless steel change from hydrophilic to superhydrophilic.Then,after chemical and heat treatment,the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion,and superhydrophobic(hydrophobic)with ultra-high adhesion,respectively.This work systematically examines the fog harvesting ability of picosecond laser treated surfaces(LTS),pristine surfaces(PS),laser and chemical treated surfaces(LCTS),laser and heat-treated surfaces(LHTS).Compared with the PS,the as-prepared surfaces enhanced the fog harvesting efficiency by 50%.This work provides a fast and simple method to fog collectors,which offer a great opportunity to develop water harvesters for real world applications. 展开更多
关键词 fog harvesting SUPERHYDROPHOBIC SUPERHYDROPHILIC picosecond laser stenocara beetle
下载PDF
Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting 被引量:8
2
作者 Zhihua Yu Huimei Zhang +10 位作者 Jianying Huang Shuhui Li Songnan Zhang Yan Cheng Jiajun Mao Xiuli Dong Shouwei Gao Shanchi Wang Zhong Chen Yaoxing Jiang Yuekun Lai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第2期85-92,共8页
Efficient collection of water from fog provides a potential solution to solve the global freshwater shortage problem, particularly in the desert or arid regions. In this work, a flexible and highly efficient fog colle... Efficient collection of water from fog provides a potential solution to solve the global freshwater shortage problem, particularly in the desert or arid regions. In this work, a flexible and highly efficient fog collector was prepared by mimicking the back exoskeleton structure of the Namib desert beetle. The improved fog collector was constructed by a superhydrophobic-superhydrophilic patterned fabric via a simple weaving method, followed by in-situ deposition of copper particles. Compared with the conventional fog collector with a plane structure, the fabric has shown a higher water-harvesting rate at 1432.7 mg/h/cm2,owing to the biomimetic three-dimensional structure, its enhanced condensation performance enabled by the copper coating and the rational distribution of wetting units. The device construction makes use of the widely available textile materials through mature manufacturing technology, which makes it highly suitable for large-scale industrial production. 展开更多
关键词 Superwettability FABRIC Copper Namib desert beetle fog harvesting
原文传递
Bio-inspired Fog Harvesting Materials:Basic Research and Bionic Potential Applications 被引量:4
3
作者 Kui Wan Xuelian Gou Zhiguang Guo 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第3期501-533,共33页
With the explosive growth of the world's population and the rapid increase in industrial water consumption,the world's water supply has fallen into crisis.The shortage of fresh water resources has become a glo... With the explosive growth of the world's population and the rapid increase in industrial water consumption,the world's water supply has fallen into crisis.The shortage of fresh water resources has become a global problem,especially in arid regions.In nature,many organisms can collect water from foggy water under harsh conditions,which provides us with inspiration for the development of new functional fog harvesting materials.A large number of bionic special wettable synthetic surfaces are synthesized for water mist collection.In this review,we introduce some water collection phenomena in nature,outline the basic theories of biological water harvesting,and summarize six mechanisms of biological water collection:increased surface wettability,increased water transmission area,long-distance water delivery,water accumulation and storage,condensation promotion,and gravity-driven.Then,the water collection mechanisms of three typical organisms and their synthesis are discussed.And their function,water collection efficiency,new developments in their biomimetic materials are narrated,which are cactus,spider and desert beetles.The study of multiple bionics was inspired by the discovery of Nepenthes,moist and smooth peristome.The excellent characteristics of a variety of biological water collection structures,combined with each other,are far superior to other single synthetic surfaces.Furthermore,the main problems in the preparation and application of biomimetic fog harvesting materials and the future development trend of materials fog harvesting are prospected. 展开更多
关键词 water crisis SUPERHYDROPHOBIC special wettability fog harvesting mechanism bionic potential multiple bionics Copyright
下载PDF
Lubricant self-replenishing slippery surface with prolonged service life for fog harvesting 被引量:2
4
作者 Yi CHEN Weimin LIU +1 位作者 Jinxia HUANG Zhiguang GUO 《Friction》 SCIE EI CAS CSCD 2022年第10期1676-1692,共17页
Slippery lubricant-infused surfaces exhibit excellent fog-harvesting capacities compared with superhydrophobic and superhydrophilic surfaces.However,lubricant depletion is typically unavoidable under dynamic condition... Slippery lubricant-infused surfaces exhibit excellent fog-harvesting capacities compared with superhydrophobic and superhydrophilic surfaces.However,lubricant depletion is typically unavoidable under dynamic conditions,and reinfused oil is generally needed to recover the fog-harvesting capacity.Herein,an effective strategy for delaying the depletion of lubricant to prolong the service life of fog harvesting is proposed.An ultrathin transparent lubricant self-replenishing slippery surface was fabricated via facile one-step solvent evaporation polymerization.The gel film of the lubricant self-replenishing slippery surface,which was embedded with oil microdroplets,was attached to glass slides via the phase separation and evaporation of tetrahydrofuran.The gel film GFs-150(with oil content 150 wt%of aminopropyl-terminated polydimethyl siloxane(PDMS–NH2))exhibited superior slippery and fog-harvesting performance to other gel films.Furthermore,the slippery surfaces with the trait of oil secretion triggered by mechanical stress exhibited better fog-harvesting capabilities and longer service life than surfaces without the function of lubricant self-replenishment.The lubricant self-replenishing,ultrathin,and transparent slippery surfaces reported herein have considerable potential for applications involving narrow spaces,visualization,long service life,etc. 展开更多
关键词 prolonged service life lubricant self-replenishing slippery liquid-infused surfaces fog harvesting
原文传递
应用于高效雾气收集的润滑微沟槽锥
5
作者 杨二鑫 马臣西 +4 位作者 罗玉琼 刘岚 郑爽爽 姚晰 鞠婕 《Science China Materials》 SCIE EI CAS CSCD 2024年第5期1574-1580,共7页
液滴在不对称一维表面的定向输送具有广泛应用,包括雾气收集、油水分离、海水淡化及传感等.液滴所受的驱动力和阻力共同作用决定液滴的运动性能,为提高液滴的运动性能,常见的策略是通过在运动方向引入各种不对称结构以增加驱动力,或者... 液滴在不对称一维表面的定向输送具有广泛应用,包括雾气收集、油水分离、海水淡化及传感等.液滴所受的驱动力和阻力共同作用决定液滴的运动性能,为提高液滴的运动性能,常见的策略是通过在运动方向引入各种不对称结构以增加驱动力,或者构建光滑表面以减少阻力.然而,到目前为止将增强驱动力和降低阻力同时整合到一个体系中的策略仍未见报道,这主要是由于传统的液体填充润滑表面所需的润滑油很难在物理或化学不对称的表面上稳定存在.本研究中,我们提出在具有微沟槽结构的锥表面接枝柔性聚合物分子刷,即通过协同表面结构和化学修饰来增大液滴在锥结构表面拉普拉斯驱动力并减小粘滞阻力.结果表明,与仅具有微沟槽结构的锥和仅具有聚合物分子刷的光滑锥相比,润滑微沟槽锥可显著提高液滴的运动性能,本研究为开发高效液滴运输智能表面提供了新思路. 展开更多
关键词 cone structure micro-grooves polymer brush fog harvesting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部