In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone ...In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.展开更多
The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solv...The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress.展开更多
The paper proposes the conception of Beads type fold system. The mechanical analyses of the typical tectonic system are made by means of elastic stability theory, mathematical and mechanical method and rheology. The...The paper proposes the conception of Beads type fold system. The mechanical analyses of the typical tectonic system are made by means of elastic stability theory, mathematical and mechanical method and rheology. The relation among the deflections of folds and time, external forces, and distribution of stresses, strain energy density are analyzed to explain the causing mechanism of folding earthquake.展开更多
The Sinjar anticline is a double plunging, trending almost E-W in the northwestern part of Iraq. It extends in Syria for about 42 km, whereas in Iraq, its length is about 91 km, and the width is about 31 km. The north...The Sinjar anticline is a double plunging, trending almost E-W in the northwestern part of Iraq. It extends in Syria for about 42 km, whereas in Iraq, its length is about 91 km, and the width is about 31 km. The northern limb (45° - 80°) is steeper than the southern limb (15° - 25°), with average plunges dip of 35° and axial plane dipping of 47.5° southwards. The exposed rocks in the anticline range in age from Upper Cretaceous, represented by the Shiranish Formation, to Upper Miocene, represented by the Injana Formation. Google Earth image was used to calculate structural data, which were used to indicate the structural origin of the Sinjar anticline. This was achieved by calculating the Aspect Ratio (AR), Fold Symmetry Index (IFS or IFS), and length of the mountain front (FS). Accordingly, it was found that the structural origin of the Sinjar anticline is a fault-bend fold.展开更多
基金supported by the Korea Science and Engineering Foundation Grant(National Research Laboratory Program,R0A-2007-000-200012-0)the Korea Research Foundation(KRF-006-005-J03301)partially supported by the 2009 KU Brain Pool of Konkuk University
文摘In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.
基金supported by National Natural Science Foundation ofChina(Grant No.50935002)
文摘The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress.
文摘The paper proposes the conception of Beads type fold system. The mechanical analyses of the typical tectonic system are made by means of elastic stability theory, mathematical and mechanical method and rheology. The relation among the deflections of folds and time, external forces, and distribution of stresses, strain energy density are analyzed to explain the causing mechanism of folding earthquake.
文摘The Sinjar anticline is a double plunging, trending almost E-W in the northwestern part of Iraq. It extends in Syria for about 42 km, whereas in Iraq, its length is about 91 km, and the width is about 31 km. The northern limb (45° - 80°) is steeper than the southern limb (15° - 25°), with average plunges dip of 35° and axial plane dipping of 47.5° southwards. The exposed rocks in the anticline range in age from Upper Cretaceous, represented by the Shiranish Formation, to Upper Miocene, represented by the Injana Formation. Google Earth image was used to calculate structural data, which were used to indicate the structural origin of the Sinjar anticline. This was achieved by calculating the Aspect Ratio (AR), Fold Symmetry Index (IFS or IFS), and length of the mountain front (FS). Accordingly, it was found that the structural origin of the Sinjar anticline is a fault-bend fold.