期刊文献+
共找到46,874篇文章
< 1 2 250 >
每页显示 20 50 100
Indoor Formaldehyde Removal Techniques through Paints: Review
1
作者 Prajyot Dhawale Ravindra V. Gadhave 《Green and Sustainable Chemistry》 2024年第1期1-15,共15页
Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include te... Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include textiles, paints, wallpapers, glues, adhesives, varnishes, and lacquers;furniture and wooden products like particleboard, plywood, and medium-density fiberboard that contain formaldehyde-based resins;shoe products;cosmetics;electronic devices;and other consumer goods like paper products and insecticides. According to the World Health Organisation, indoor formaldehyde concentrations shouldn’t exceed 0.1 mg/m<sup>3</sup>. The methods include membrane separation, plasma, photocatalytic decomposition, physisorption, chemisorption, biological and botanical filtration, and catalytic oxidation. Materials based on metal oxides and supported noble metals work as oxidation catalysts. Consequently, a paint that passively eliminates aldehydes from buildings can be developed by adding absorbents and formaldehyde scavengers to the latex composition. It will be crucial to develop techniques for the careful detection and removal of formaldehyde in the future. Additionally, microbial decomposition is less expensive and produces fewer pollutants. The main goal of future research will be to develop a biological air quality control system that will boost the effectiveness of formaldehyde elimination. The various methods of removing formaldehyde through paints have been reviewed here, including the use of mixed metal oxides, formaldehyde-absorbing emulsions, nano titanium dioxide, catalytic oxidation, and aromatic formaldehyde abating materials that can improve indoor air quality. 展开更多
关键词 formaldehyde ABSORPTION Paints Catalytic Oxidation NANOFILLERS
下载PDF
Purification of copper foils driven by single crystallization
2
作者 寇金宗 赵孟泽 +10 位作者 李兴光 何梦林 杨方友 刘科海 成庆秋 任云龙 刘灿 付莹 吴慕鸿 刘开辉 王恩哥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期506-511,共6页
High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current puri... High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9%(3N) to 99.99%(4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu.The success of purification mainly relies on(i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and(ii) the high-temperature evaporation of elements with high saturated vapor pressure.The purified Cu foils display higher flexibility(elongation of 70%) and electrical conductivity(104% IACS) than that of the original commercial rolled Cu foils(elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards. 展开更多
关键词 purification copper foil thermal annealing technique single crystallization
原文传递
Research Progress on Purification Process, Content Determination and Pharmacological Action of Atractylodin
3
作者 Xin SUN Jingwen WANG +1 位作者 Yang XI Chenghao JIN 《Asian Agricultural Research》 2024年第3期33-35,40,共4页
Atractylodis Rhizoma comes from the dry rhizome of Atractylis lancea or Atractylodes chinensis in the Compositae family,and it is suitable for preventing and treating diseases such as cold,edema,night blindness and rh... Atractylodis Rhizoma comes from the dry rhizome of Atractylis lancea or Atractylodes chinensis in the Compositae family,and it is suitable for preventing and treating diseases such as cold,edema,night blindness and rheumatic arthralgia.Atractylodin is the main active component extracted and isolated from Atractylodis Rhizoma.A large number of studies have found that atractylodin has excellent drug activity in improving gastrointestinal emptying,anti-inflammation,inhibiting malignant tumor and reducing blood lipid.In this paper,the purification process and pharmacological activity of Atractylodin were summarized to provide a theoretical basis for basic research,clinical application and further development and utilization of atractylodin. 展开更多
关键词 ATRACTYLODIN PHARMACOLOGICAL action purification PROCESS CONTENT DETERMINATION
下载PDF
Comprehensive Analysis of Indoor Formaldehyde Removal Techniques:Exploring Physical,Chemical,and Biological Methods
4
作者 Yizhe Li 《Journal of Architectural Research and Development》 2024年第1期8-13,共6页
This research focuses on the evaluation of diverse approaches for removing formaldehyde from indoor environments,which is a significant concern for indoor air quality.The study systematically examines physical,chemica... This research focuses on the evaluation of diverse approaches for removing formaldehyde from indoor environments,which is a significant concern for indoor air quality.The study systematically examines physical,chemical,and biological methods to ascertain their effectiveness in formaldehyde mitigation.Physical methods,including air circulation and adsorption,particularly with activated carbon and molecular sieves,are assessed for their efficiency in various concentration scenarios.Chemical methods,such as photocatalytic oxidation using titanium dioxide and plasma technology,are analyzed for their ability to decompose formaldehyde into non-toxic substances.Additionally,biological methods involving plant purification and microbial transformation are explored for their eco-friendly and sustainable removal capabilities.The paper concludes that while each method has its merits,a combined approach may offer the most effective solution for reducing indoor formaldehyde levels.The study underscores the need for further research to integrate these methods in a practical,cost-effective,and environmentally sustainable manner,highlighting their potential to improve indoor air quality significantly. 展开更多
关键词 Indoor air quality formaldehyde removal Photocatalytic oxidation Activated carbon Biological purification
下载PDF
An Affordable and Easily Accessible Approach for Acrylonitrile Monomer Purification through a Simple Column Technique
5
作者 Rawdah Whba Mohd Sukor Su’ait Azizan Ahmad 《Journal of Materials Science and Chemical Engineering》 2024年第4期18-28,共11页
This manuscript presents a dataset detailing a method for purifying monomers. Purification plays a crucial role in every chemical process, as it leads to an improvement in product quality through the removal of impuri... This manuscript presents a dataset detailing a method for purifying monomers. Purification plays a crucial role in every chemical process, as it leads to an improvement in product quality through the removal of impurities. The primary method for monomer purification, like acrylonitrile (AN), is the distillation technique. However, this technique is unsafe and hard to set up or handle. A straightforward, risk-free, low-cost method like the column technique resolves these issues. A simple column technique demonstrated the successful execution of purifying AN. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) analyses confirmed that AN was successfully purified, with purity reaching 99.8%. FTIR spectra revealed changes in the position and intensity of the stretching vibration peaks after purification. Also, the functional groups of the inhibitor monomethyl ether of hydroquinone (MeHQ) were undetected after purification. Furthermore, after purification, NMR spectra revealed the absence of aromatic protons and carbons associated with MeHQ. In conclusion, the column technique is a successful and inexpensive way to purify AN monomers. This makes it useful for a wide range of applications, especially in polymerization reactions where MeHQ needs to be removed to prevent self-polymerization during the initiation process. 展开更多
关键词 Liquid Monomers ACRYLONITRILE purification Inhibitor Simple Column
下载PDF
Superwetting Ag/α-Fe_(2)O_(3) anchored mesh with enhanced photocatalytic and antibacterial activities for efficient water purification
6
作者 Jiakai Li Changpeng Lv +5 位作者 Jiajia Song Xiaoling Zhang Xizhen Huang Yingzhuo Ma Haijie Cao Na Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期89-103,共15页
Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica... Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice. 展开更多
关键词 Superwetting Ag/α-Fe_(2)O_(3)heterostructure Enhanced photocatalytic and antibacterial activities Water purification Long-term reusability
下载PDF
Formaldehyde decomposition of air purification functional interior wall paint 被引量:4
7
作者 王晓强 张剑平 +1 位作者 朱惟德 施利毅 《Journal of Shanghai University(English Edition)》 CAS 2007年第5期527-530,共4页
新奇 nano-TiO2 ? x N x 合成被用作光催化剂并且增加了内部墙油漆。nano-TiO2 的平均直径 ? x N x 是大约 20 nm。样品的多数水晶部件是锐钛矿,它的光吸收边显著地从 387 nm 被转移到 520 nm。包含 nano-TiO2 的不同剂量的 Nano 合成... 新奇 nano-TiO2 ? x N x 合成被用作光催化剂并且增加了内部墙油漆。nano-TiO2 的平均直径 ? x N x 是大约 20 nm。样品的多数水晶部件是锐钛矿,它的光吸收边显著地从 387 nm 被转移到 520 nm。包含 nano-TiO2 的不同剂量的 Nano 合成的油漆 ? x N x 被调查在空中学习甲醛分解的性质。测试那 nano 油漆的甲醛分解比率能几乎超过 80% 到达的结果表演,特别为包含 3% 的油漆(w/w ) 的 nano-TiO2 ? x N x,它超过了 90% 。photocatalytic 甲醛分解的反应动力学上的主要调查显示实验数据很好适合一阶的反应动力学的模型。 展开更多
关键词 净化空气 功能性内墙涂料 甲醛分解 材料
下载PDF
Polysulfide nanoparticles-reduced graphene oxide composite aerogel for efficient solar-driven water purification 被引量:1
8
作者 Fantao Meng Yuang Zhang +2 位作者 Shufen Zhang Benzhi Ju Bingtao Tang 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期267-274,共8页
Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into ... Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into the field of water purification. However, the industry faces a considerable challenge of achieving comprehensive purification of ions, especially the efficient removal of mercury ions. In this work, we introduce an ideal mercury-removal platform based on facilely and cost-effectively synthesized polysulfide nanoparticles(PSNs). Further development of PSN-functionalized reduced graphene oxide(PSN-rGO) aerogel evaporator results in achieving a high evaporation rate of 1.55 kg m^(-2)h^(-1)with energy efficiency of 90.8% under 1 sun. With the merits of interconnected porous structure and adsorption ability, the photothermal aerogel presents overall purification of heavy metal ions from wastewater. During solar desalination, salt ions can be rejected with long-term stability. Compared with traditional water purification technologies, this highly efficient solar evaporator provides a new practical method to utilize clean energy for clean water production. 展开更多
关键词 Composite aerogel Solar vapor generation Photothermal conversion Water purification
下载PDF
Evaluation of Formaldehyde as a Potential Cause of Olfactory Dysfunction in Hairdressers
9
作者 Linda Bitencourt Cabral Mariana Andrade Miyamoto +3 位作者 Natália Medeiros Dias Lopes Ellen Cristine Duarte Garcia Tiago Severo Peixe Marco Aurélio Fornazieri 《Occupational Diseases and Environmental Medicine》 2023年第3期143-149,共7页
Objective: The aim of this study was to compare the olfactory function between hairdressers exposed to formaldehyde and unexposed controls, as exposure to toxic agents is a potential cause of olfactory disorders in hu... Objective: The aim of this study was to compare the olfactory function between hairdressers exposed to formaldehyde and unexposed controls, as exposure to toxic agents is a potential cause of olfactory disorders in humans. Hairdressing professionals frequently encounter formaldehyde, a component found in hair products that are known to have various toxic effects on the human body, including alterations in the sense of smell. Methods: A total of 32 hairdressing volunteers exposed to formaldehyde and 32 non-exposed volunteers matched for age, sex, education and smoking status underwent the University of Pennsylvania Smell Identification Test (UPSIT<sup>®</sup>). Results: The findings demonstrated a decrease in UPSIT<sup>®</sup> olfactory test scores and a higher degree of olfactory loss among hairdressers exposed to formaldehyde (mean UPSIT<sup>®</sup> scores: 30.6 vs 35.1, p Conclusion: Occupational exposure of hairdressers to formaldehyde is associated with diminished olfactory function. Education approach and promotion of personal protective equipment usage should be encouraged. 展开更多
关键词 formaldehyde Olfaction Disorders Occupational Medicine TOXICOLOGY
下载PDF
Purification of Moringa oleifera Leaves Protease by Three-Phase Partitioning and Investigation of Its Potential Antibacterial Activity
10
作者 Adam Abdoulaye Agossou D. P. Noumavo +6 位作者 Durand Dah-Nouvlessounon Messan A. B. Ohin Hasan Bayraktar Farid T. Bade Honoré S. Bankole Lamine Baba-Moussa Farid Baba-Moussa 《American Journal of Plant Sciences》 CAS 2023年第1期64-76,共13页
One of plant-based products for dental care is plant-based proteolytic enzymes which are principally proteases. In order not to damage the protein and bioactive content, an efficient method should be employed for thei... One of plant-based products for dental care is plant-based proteolytic enzymes which are principally proteases. In order not to damage the protein and bioactive content, an efficient method should be employed for their purifications. As such, three-phase partitioning (TPP) was used to purify protease from moringa (Moringa oleifera). TPP is an emerging, promising, non-chromatographic and economical technology which is simple, quick, efficient and often one-step process for the separation and purification of bioactive molecules from natural sources. It involves the addition of salt (ammonium sulphate) to the crude extract followed by the addition of an organic solvent (butanol). The protein appears as an interfacial precipitate between upper organic solvent and lower aqueous phases. The various conditions such as ammonium sulphate, ratio of crude extract to t-butanol and pH which are required for attaining efficient purification of the protease fractions were optimized. Under optimized conditions, it was seen that, 35% of ammonium sulphate saturation with 1:0.75 ratio of crude extract to t-butanol at pH 7 gave 4.94-fold purification with 96.20% activity yield of protease in the middle phase of the TPP system. The purified enzyme from Moringa oleifera has no antimicrobial effect on the pathogenic bacteria tested. However, this purified enzyme, can be considered as a promising agent, cheap, and safe source which is suitable for using in various industries. 展开更多
关键词 Three-Phase Partitioning Moringa oleifera PROTEASE Protein purification ANTIMICROBIAL
下载PDF
Experiments and model development of p-nitrochlorobenzene and naphthalene purification in a continuous tower melting crystallizer
11
作者 Wenlong Xiao Yonglin Li +2 位作者 Zhengming Yi Sheng Yang He’an Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期9-17,共9页
With the increasing demand for high-purity products,the industrial application of melt crystallization technology has been highly concerned.In this study,the purification process of nitrochlorobenzene binary eutectic ... With the increasing demand for high-purity products,the industrial application of melt crystallization technology has been highly concerned.In this study,the purification process of nitrochlorobenzene binary eutectic system(NBES)and naphthalene–benzothiophene solid solution system(NBSSS)in tower melting crystallizer is analyzed,and a mathematical model of crystallization process is established.The key parameters in terms of feed concentration,crystal bed height,reflux ratio and stirring speed effi-ciency on purification effects were discussed by the established model.The results show that the concentration of p-nitrochlorobenzene was purified from 90.85%to 99.99%,when the crystal bed height is 600 mm,the reflux ratio is 2.5,and the stirring speed is 12 rmin^(-1).The naphthalene concentration is purified from 95.89%to 99.99%,when the crystal bed height is 400 mm,the reflux ratio is 1.43,and the stirring speed is 16 rmin^(-1).The quality of the model is evaluated by the ARD(average relative deviation).The minimum ARD values of the NBES and NBSSS are 2.39%and 5.22%,respectively,indicating the model satisfactorily explains the purification process. 展开更多
关键词 CRYSTALLIZATION Separation Mathematical modeling CRYSTALLIZER purification
下载PDF
Solubility study and selective purification of HMX explosive in organic electrolyte solution of zinc acetate/diethylene glycol
12
作者 Javad Ghorbani Sajjad Damiri Hamid Reza Pouretedal 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期15-23,共9页
In this study, an organic electrolyte solution based on zinc acetate/diethylene glycol(ZA/DEG) is introduced for the selective purification of cyclotetramethylene tetranitramine(HMX) high explosive from its identical ... In this study, an organic electrolyte solution based on zinc acetate/diethylene glycol(ZA/DEG) is introduced for the selective purification of cyclotetramethylene tetranitramine(HMX) high explosive from its identical homologue cyclotrimethylene trinitramine(RDX). The dielectric constant of various organic solutions were investigated through Electrochemical Impedance Spectroscopy(EIS) in the range of 1.0 Hz—30 MHz. and some quantum-chemical descriptors of RDX and HMX dissolutions in the ZA cosolvent were analyzed using Density Functional Theory(DFT). The results show dielectric constant and solubility of RDX is higher than that of HMX, and by increasing of ZA concentration in DEG solvent, the values of dielectric constants were enhanced. Furthermore, the presence of ZA cosolvent on the solubility of two explosives was statistically investigated by Central Composite Design(CCD) of experiment, and some solubility parameters including activity coefficient, dissolving enthalpy, and mixing enthalpies were determined. The experimental results indicate that the weight ratio of RDX to HMX solubility in the proposed organic electrolyte changes up to 30 times, which provides a selective and sequential separation method to separate two materials with similar chemical properties with a separation efficiency>98% and HMX purity> 99.8%. The X-Ray Diffraction(XRD) analysis, High-Performance Liquid Chromatography(HPLC), Laser-Induced Breakdown Spectroscopy(LIBS), and Fourier Transform Infrared Spectroscopy(FT-IR) approves the acceptable quality of the separated materials. The proposed method makes the efficient and safe purification of high-quality HMX for application in oil and gas well perforating gun charges, using a nonvolatile and inflammable organic electrolyte. 展开更多
关键词 Organic electrolyte purification SOLUBILITY HMX RDX Diethylene glycol
下载PDF
Effect of polytetrafluoroethylene hollow fiber microstructure on formaldehyde carbonylation performance in membrane contactor
13
作者 Zhihao Zhu Ying Sun +4 位作者 Haijun Yu Meng Li Xingming Jie Guodong Kang Yiming Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期148-155,共8页
Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane cont... Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane contactor has been proved in our previous study. In this paper, the effect of membrane microstructure on process performance was further investigated. Three porous PTFE hollow fibers with different pore sizes and one polydimethylsiloxane(PDMS)/PTFE composite membrane with dense layer were fabricated for comparison. The physical and chemical properties of four membranes, including chemical composition, morphology, contact angle, liquid entry pressure, thermodynamic analysis and gas permeability, were systemically characterized. Experiments of formaldehyde carbonylation under different reaction conditions were conducted. The results indicated that the yield of glycolic acid increased with decreasing pore size for porous membranes, which was due to the improvement of wetting behavior. The dense layer of PDMS in composite hollow fiber could effectively prevent the solvent from entering membrane pores, thus the membrane exhibited the best performance. At reaction temperature of 120℃ and operation pressure of 3.0 MPa, the yield of glycolic acid was always higher than 90% as the mass ratio of trioxane and phosphotungstic acid increased from 0.2:1 to 0.8:1. The highest turnover frequency was up to 26.37 mol·g^(-1)·h^(-1). This study provided a reference for the understanding and optimization of membrane contactors for the synthesis of glycolic acid using solvent with low surface tension. 展开更多
关键词 PTFE hollow fiber MICROSTRUCTURE Membrane contactor Membrane wetting Carbonylation of formaldehyde
下载PDF
Evaluation of Formaldehyde as a Potential Cause of Olfactory Dysfunction in Hairdressers
14
作者 Linda Bitencourt Cabral Mariana Andrade Miyamoto +3 位作者 Natália Medeiros Dias Lopes Ellen Cristine Duarte Garcia Tiago Severo Peixe Marco Aurélio Fornazieri 《Journal of Power and Energy Engineering》 2023年第3期143-149,共7页
Objective: The aim of this study was to compare the olfactory function between hairdressers exposed to formaldehyde and unexposed controls, as exposure to toxic agents is a potential cause of olfactory disorders in hu... Objective: The aim of this study was to compare the olfactory function between hairdressers exposed to formaldehyde and unexposed controls, as exposure to toxic agents is a potential cause of olfactory disorders in humans. Hairdressing professionals frequently encounter formaldehyde, a component found in hair products that are known to have various toxic effects on the human body, including alterations in the sense of smell. Methods: A total of 32 hairdressing volunteers exposed to formaldehyde and 32 non-exposed volunteers matched for age, sex, education and smoking status underwent the University of Pennsylvania Smell Identification Test (UPSIT<sup>®</sup>). Results: The findings demonstrated a decrease in UPSIT<sup>®</sup> olfactory test scores and a higher degree of olfactory loss among hairdressers exposed to formaldehyde (mean UPSIT<sup>®</sup> scores: 30.6 vs 35.1, p Conclusion: Occupational exposure of hairdressers to formaldehyde is associated with diminished olfactory function. Education approach and promotion of personal protective equipment usage should be encouraged. 展开更多
关键词 formaldehyde Olfaction Disorders Occupational Medicine TOXICOLOGY
下载PDF
Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
15
作者 杜芳芳 樊钢 +1 位作者 吴一鸣 任宝藏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期140-150,共11页
We present a faithful and efficient hyperentanglement purification protocol(hyper-EPP)for nonlocal two-photon systems in spatial-polarization-time-bin hyperentangled Bell states.As the single-photon detectors can dete... We present a faithful and efficient hyperentanglement purification protocol(hyper-EPP)for nonlocal two-photon systems in spatial-polarization-time-bin hyperentangled Bell states.As the single-photon detectors can detect and herald the undesirable properties caused by side leakage and finite coupling strength,the parity-check gates and swap gates of our hyper-EPP in the spatial,polarization and time-bin mode degrees of freedom(DoFs)work faithfully.The qubit-flip errors in photon systems in three DoFs can be corrected effectively with the faithful parity-check gates and the photon pairs can be reused to distill high-fidelity ones by introducing the faithful swap gates,which greatly increases the efficiency of our hyper-EPP.Further,the maximal hyperentanglement can be obtained in principle by operating multiple rounds of the hyper-EPP. 展开更多
关键词 quantum communication hyperentanglement purification photon system multiple degrees of freedom
原文传递
Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate
16
作者 Qinli Zhang Hao Wu +3 位作者 Yan Feng Daolin Wang Huaibin Su Xiaoshuang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期225-235,共11页
Rod milling sand(RMS)—a coarse sand aggregate—was recycled for cemented paste backfill(CPB)for the underground mined area at the Jinchuan nickel deposit,named rod milling sand-based cemented paste backfill(RCPB).The... Rod milling sand(RMS)—a coarse sand aggregate—was recycled for cemented paste backfill(CPB)for the underground mined area at the Jinchuan nickel deposit,named rod milling sand-based cemented paste backfill(RCPB).The adverse effects of coarse particles on the transportation of CPB slurry through pipelines to underground stopes resulting in weakening of the stability of the backfill system are well known.Therefore,sulfonated naphthalene formaldehyde(SNF)condensate was used for the performance improvement of RCPB.The synergistic effect of solid content(SC),lime-to-sand ratio,and SNF dosage on the rheological and physicomechanical properties,including slump,yield stress,bleeding rate,uniaxial compressive strength(UCS),as well as mechanism analysis of RCPB,have been explored.The results indicate that the effect of SNF on RCPB performance is related to the SNF dosage,lime-to-sand ratio,and SC.The slump of fresh RCPB with 0.1wt%-0.5wt%SNF increased by 2.6%-26.2%,whereas the yield stress reduced by 4.1%-50.3%,indicating better workability and improved cohesiveness of the mix.The bleeding rate of fresh RCPB decreased first and then rose with the increase of SNF dosage,and the peak decrease was 67.67%.UCS of RCPB first increased and then decreased with the increase of SNF dosage.At the optimal SNF addition ratio of 0.3wt%,the UCS of RCPB curing for 7,14 and,28 d ages increased by 31.5%,28.4%,and 29.5%,respectively.The beneficial effects of SNF in enhancing the early UCS of RCPB have been corroborated.However,the later UCS increases at a slower rate.The research findings may guide the design and preparation of RCPB with adequate performance for practical applications. 展开更多
关键词 rod milling sand sulfonated naphthalene formaldehyde condensate cemented paste backfill rheological properties physicomechanical properties
下载PDF
Curing Process of Phenol Formaldehyde Resin for Plywood under Vacuum Conditions
17
作者 Guobing Xiong Lu Hong +2 位作者 Zehui Ju Xiaoning Lu Juwan Jin 《Journal of Renewable Materials》 EI 2023年第9期3447-3461,共15页
The study characterized the curing behaviors of phenol formaldehyde(PF)resin under different vacuum degrees and explored the properties of 9-ply plywood panels hot-pressed under both vacuum and atmospheric conditions.... The study characterized the curing behaviors of phenol formaldehyde(PF)resin under different vacuum degrees and explored the properties of 9-ply plywood panels hot-pressed under both vacuum and atmospheric conditions.The changes in core temperature and moisture content of the plywood mats during hot pressing were investigated as well.It was found that the gel times and gel temperatures of PF resin decreased with the increase of vacuum degree using a self-made device.FTIR spectra indicated the degree of polycondensation of hydroxymethyl gradu-ally increased with the increase in temperature.It was also observed that a higher degree of vacuum led to a slower polycondensation reaction rate of PF resin.During different hot-pressing processes,the bonding strengths in the innermost and uppermost gluelines of the vacuum hot-pressed plywood panels were up to 30%–50%higher than their counterparts of conventional hot-pressed products.A less difference in the bonding strengths between these two gluelines was also observed for vacuum hot-pressed products.In addition,the core of vacuum hot-pressed plywood was found to have a greater heating rate and higher temperature at thefinal stage of hot pressing,which was beneficial to cure the PF resin.The results from this study indicate a promising potential of introducing a vacuum during hot pressing to improve the quality and productivity of plywood products and provide a basis for adopting vacuum to hot press wood composites. 展开更多
关键词 Phenol formaldehyde resin VACUUM gel time FTIR PLYWOOD bonding strength
下载PDF
Advances of manganese-oxides-based catalysts for indoor formaldehyde removal
18
作者 Jiayu Zheng Wenkang Zhao +5 位作者 Liyun Song Hao Wang Hui Yan Ge Chen Changbao Han Jiujun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期626-653,共28页
Formaldehyde(HCHO)has been identified as one of the most common indoor pollutions nowadays.Manganese oxides(MnO_(x))are considered to be a promising catalytic material used in indoor HCHO oxidation removal due to thei... Formaldehyde(HCHO)has been identified as one of the most common indoor pollutions nowadays.Manganese oxides(MnO_(x))are considered to be a promising catalytic material used in indoor HCHO oxidation removal due to their high catalytic activity,low-cost,and environmentally friendly.In this paper,the progress in developing MnO_(x)-based catalysts for HCHO removal is comprehensively reviewed for exploring the mechanisms of catalytic oxidation and catalytic deactivation.The catalytic oxidation mechanisms based on three typical theory models(Mars-van-Krevelen,Eley-Rideal and Langmuir-Hinshelwood)are discussed and summarized.Furthermore,the research status of catalytic deactivation,catalysts’regeneration and integrated application of MnO_(x)-based catalysts for indoor HCHO removal are detailed in the review.Finally,the technical challenges in developing MnO_(x)-based catalysts for indoor HCHO removal are analyzed and the possible research direction is also proposed for overcoming the challenges toward practical application of such catalysts. 展开更多
关键词 Manganese dioxide(MnOx) formaldehyde(HCHO) Catalytic oxidation Room temperature Indoors
下载PDF
Ethylene purification in a metal–organic framework over a wide temperature range via pore confinement
19
作者 Xue-Qian Wu Peng-Dan Zhang +4 位作者 Xin Zhang Jing-Hao Liu Tao He Jiamei Yu Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1703-1710,共8页
The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a... The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a microporous metal–organic framework(MOF) BUT-315-a as a C_(2)H_(6)-selective adsorbent for the separation of C2H6/C2H4gas mixture. BUT-315-a combines good IAST selectivity of 2.35 with high C_(2)H_(6)uptake of 97.5 cm^(3)g^(-1), giving superior high separation potential ΔQ(2226 mmol L^(-1)) for equimolar C_(2)H_(6)/C_(2)H_(4) at 298 K. Impressively, such excellent performance can be preserved at higher temperatures of 313 and 323 K to accommodate industrial conditions. Efficient dynamic separation performance of BUT-315-a has been demonstrated by column breakthrough experiments under varied temperatures and gas ratios. Theoretical calculations further reveal multiple synergistic interactions between C_(2)H_(6) and the framework. This work highlights a new benchmark material for C_(2)H_(6)/C_(2)H_(4)separation and provides guidance for designing adsorbent for separation applications. 展开更多
关键词 Metal–organic framework Adsorptive separation Ethylene purification Temperature adaptability Pore confinement
下载PDF
Purification Process and Biological Activity of Daphnoretin
20
作者 Jinglong CAO Jian LIU +3 位作者 Yannan LI Hui XUE Yinghua LUO Chenghao JIN 《Plant Diseases and Pests》 CAS 2023年第1期34-36,共3页
Daphnoretin,belonging to coumarin compounds,is the main active ingredient of Wikstroemia indica,and has anti-inflammatory,anti-depression,anti-tumor and other pharmacological activities.This article reviews the extrac... Daphnoretin,belonging to coumarin compounds,is the main active ingredient of Wikstroemia indica,and has anti-inflammatory,anti-depression,anti-tumor and other pharmacological activities.This article reviews the extraction and purification process,content determination methods and pharmacological activity of daphnoretin,in order to provide a theoretical reference for optimization of purification process,improvement of content determination technique and further clinical application of daphnoretin. 展开更多
关键词 DAPHNORETIN purification process Content determination Pharmacological activity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部