Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura...Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.展开更多
Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate...Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.展开更多
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are...This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.展开更多
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli...Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.展开更多
We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across th...We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.展开更多
The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely s...The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely shallow zone.However,it remains uncertain whether this form is equally effective when applied to test data generated by irregular waves,as the Goda graph was initially developed based on overtopping data from regular wave tests.Additionally,it is unclear whether this form is suitable for formulating overtopping discharge at composite vertical walls.In order to address these questions,a 2D overtopping experiment was conducted,incorporating both simple and composite types of vertical walls,with various relative water depths across the entire range,excluding the extremely shallow zone.A novel analysis procedure was developed,which proved to be highly productive and can be considered a general method for data fitting.Ultimately,the study yielded two conclusions:(1)the solitary-wave-like form is remarkably effective in formulating overtopping test data generated by irregular waves,regardless of whether the vertical wall is simple or composite,and(2)the resulting formulas exhibit definitely better performance compared with existing formulas.展开更多
In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining pr...In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns.展开更多
Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic for...Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.展开更多
The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed...The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed for the successful application of dual-phase steel series in engineering structures.Therefore,differences in the mech-anical properties,forming limit,hole expansion ratio,and stretch bend limit of the 1.5 GPa ultrahigh-strength steel,including DP1500,QP1500,and MS1500,have been systematically studied.Results show that the DP1500 exhibits good plastic deformation performance and approximately 5% uniform elongation,and its true major strain minimum on the forming limit curve(FLC_(0)) value is approximately 0.083,which is higher and lower than the FLC_(0) values of MS1500 and QP1500 of the same strength grade,respectively.DP1500 also exhibits good flanging and pore expansion capabilities and superior performance to QP1500 and MS1500.The minimum radius-to-thickness(R/T) ratio(1.4) of DP1500 in the 90° bend tests transverse to the rolling direction is between the R/T ratios of MS1500 and the QP1500.Overall,the formability performance of DP1500 is between that of MS1500 and QP1500.Its excellent crash energy absorption and formability performance render it a suitable structural component,and it has been successfully tested and verified on a typical complex ultrahigh-strength steel skeleton structure.展开更多
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0...The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.展开更多
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use...We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.展开更多
Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. ...Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. Methods: Immunofluorescence was used for the detection of myelin-associated glycoprotein (MAG), a characteristic protein of rat oligodendrocytes (OLN-93 cells). To evaluate the potential protective effects of SSFs on OLN-93 cells injured by Aβ<sub>1-42</sub>, an injury model was established by subjecting OLN-93 cells to Aβ<sub>1-42</sub> exposed. Cell morphology was examined using an inverted microscope, while cell viability was assessed using the colorimetric method of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Additionally, lactate dehydrogenase (LDH) was measured using the pyruvic acid reduction assay. The Ginkgo biloba leaf extract (GBE) injection was used as a positive control. Results: A total of >95% of the MAG immunofluorescence-positive cells were identified as oligodendrocytes. Gradually increasing concentrations of SSFs impaired the cells, and the maximum nondetrimental dose for OLN-93 cells was 75 mg/L. This study assessed the effects of SSFs on OLN-93 cells damaged by Aβ<sub>1-42</sub>. The results indicated that SSFs significantly improved OLN-93 cell morphological abnormal changes, increased the OLN-93 cell survival rate, and reduced LDH release. Conclusion: SSFs can alleviate Aβ<sub>1-42</sub>-induced damage of OL.展开更多
Ω results involving the coefficients of automorphic L-functions are important research object in analytic number theory.Let f be a primitive holomorphic cusp form.Denote by λ_(f×f)(n) the nth Fourier coefficien...Ω results involving the coefficients of automorphic L-functions are important research object in analytic number theory.Let f be a primitive holomorphic cusp form.Denote by λ_(f×f)(n) the nth Fourier coefficient of Rankin-Selberg L-function L(f×f,s).This paper combines Kühleitner and Nowak′s Omega theorem and the analytic properties of Rankin-Selberg L-functions to study Omega results for coefficients of Rankin-Selberg L-functions over sparse sequences,and establishes the asymptotic formula for Σ_(n≤x)λf×f(n^(m))(m=2,3).展开更多
Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts...Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.展开更多
A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on ...A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on glass forming ability(GFA) and mechanical properties of Zr55Al10Ni5Cu30 bulk metallic glass(BMG) were investigated.The results show that the addition of an appropriate amount(less than 3%,mole fraction) of Fe enhances GFA,as indicated by the increase in the reduced glass transition temperature Trg(=Tg/Tl) and the parameter γ(=Tx/(Tg+Tl)) with increasing Fe content,and GFA gets deteriorated by further Fe addition(4%).The addition of Fe also effectively improves the compressive plasticity and increases the compressive fracture strength in these Zr-based BMGs.Compressive tests on BMG sample with 3 mm in diameter and 6 mm in length reveal work-hardening and a certain plastic strain in the alloy containing 2% Fe.The BMG composite containing 4% Fe also exhibits a high fracture strength along with significant plasticity.展开更多
Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal ...Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal experiment. The variable curves of DCF showed that the forging procedure was started in the following 35 ms after the injection procedure was completed. It was confirmed that the high-speed filling and high-pressure densifying were combined together in the DCF process. Better surface quality and higher mechanical properties were achieved in the components formed by DCF as compared to die casting (DC) due to the refined and uniform microstructure with a few defects or without defects. Injection speed affected more effectively the yield strength (YS), ultimate tensile strength (UTS) and elongation as compared to pouring temperature, die temperature and forging force. But the pouring temperature had a more significant effect on hardness as compared to injection speed, die temperature and forging force. Pouring temperature of 675 &#176;C, injection speed of 2.7 m/s and forging force of 4000 kN except for die temperature were the optimal parameters for obtaining the highest YS, UTS, elongation and Vickers hardness. Die temperatures of 205, 195, 195 and 225 &#176;C were involved in achieving the highest YS, UTS, elongation and Vickers hardness, respectively. Obvious microporosity and microcracks were found on the fracture surface of the components formed by DC, deteriorating the mechanical properties. However, the tensile fracture morphology of the components formed by DCF was characterized by ductile fracture due to a large number of dimples and no defects, which was beneficial for improving the mechanical properties.展开更多
The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on ...The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.展开更多
A modified Swift type flow stress—strain relation was presented in order to describe the uniaxial tension test curve reasonably. The FLD-strain (forming limit diagram made up of limit strain) of 5754O aluminum allo...A modified Swift type flow stress—strain relation was presented in order to describe the uniaxial tension test curve reasonably. The FLD-strain (forming limit diagram made up of limit strain) of 5754O aluminum alloy sheet was calculated based on the two flow stress—strain relations using Yld2000-2d yield function. By comparing the theoretical and experimental results, it is found that the calculated FLD-strain based on the modified Swift flow stress—strain relation can reasonably describe the experimental results. However, though the common Voce flow stress—strain relation can describe the deformation behavior during homogenous deformation phase accurately, the FLD-strain calculated based on it is obviously lower than the experimental result. It is concluded that the higher the hardening rate of sheet metal is, the higher the forming limit is. A method for determining the reasonable flow stress—strain relation is recommended for describing the material behavior during inhomogenous phase and the forming limit of sheet metal.展开更多
The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Fi...The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Finite element analysis models of the samples with dimensions of 180 mm×180 mm were established to analyze the friction coefficients of different interfaces. Effects of various friction coefficients on the strain distributions were studied in detail. Finally, the friction coefficients in the cold forming were determined by contrasting the strain results between the experimental data and the simulated ones.展开更多
基金financially supported by the Beijing Natural Science Foundation for Young Scientists(Grant No.8214052)the Talent Fund of Beijing Jiaotong University(Grant No.2021RC226)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2115).
文摘Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.
文摘Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.52109144,52025094 and 52222905).
文摘This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.
基金supported by the National Key R&D Program of China(No.2022YFE0121300)the Introduction Plan for High end Foreign Experts,China(No.G2023105001L)the Young Foreign Talent Program,China(No.QN2023105001L).
文摘Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.
基金supported by National Natural Science Foundation of China(12061080,12161087 and 12261093)the Science and Technology Project of the Education Department of Jiangxi Province(GJJ211601)supported by National Natural Science Foundation of China(11871305).
文摘We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.
基金financially supported by the National Natural Science Foundation of China(Gramt No.51309122)。
文摘The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely shallow zone.However,it remains uncertain whether this form is equally effective when applied to test data generated by irregular waves,as the Goda graph was initially developed based on overtopping data from regular wave tests.Additionally,it is unclear whether this form is suitable for formulating overtopping discharge at composite vertical walls.In order to address these questions,a 2D overtopping experiment was conducted,incorporating both simple and composite types of vertical walls,with various relative water depths across the entire range,excluding the extremely shallow zone.A novel analysis procedure was developed,which proved to be highly productive and can be considered a general method for data fitting.Ultimately,the study yielded two conclusions:(1)the solitary-wave-like form is remarkably effective in formulating overtopping test data generated by irregular waves,regardless of whether the vertical wall is simple or composite,and(2)the resulting formulas exhibit definitely better performance compared with existing formulas.
基金supported by the fund from ShenyangMint Company Limited(No.20220056)Senior Talent Foundation of Jiangsu University(No.19JDG022)Taizhou City Double Innovation and Entrepreneurship Talent Program(No.Taizhou Human Resources Office[2022]No.22).
文摘In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns.
基金supported by National Natural Science Foundation of China(Grant Nos.51975202(Junjia Cui received the grant)and 52175315(Guangyao Li received the grant)).
文摘Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.
文摘The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed for the successful application of dual-phase steel series in engineering structures.Therefore,differences in the mech-anical properties,forming limit,hole expansion ratio,and stretch bend limit of the 1.5 GPa ultrahigh-strength steel,including DP1500,QP1500,and MS1500,have been systematically studied.Results show that the DP1500 exhibits good plastic deformation performance and approximately 5% uniform elongation,and its true major strain minimum on the forming limit curve(FLC_(0)) value is approximately 0.083,which is higher and lower than the FLC_(0) values of MS1500 and QP1500 of the same strength grade,respectively.DP1500 also exhibits good flanging and pore expansion capabilities and superior performance to QP1500 and MS1500.The minimum radius-to-thickness(R/T) ratio(1.4) of DP1500 in the 90° bend tests transverse to the rolling direction is between the R/T ratios of MS1500 and the QP1500.Overall,the formability performance of DP1500 is between that of MS1500 and QP1500.Its excellent crash energy absorption and formability performance render it a suitable structural component,and it has been successfully tested and verified on a typical complex ultrahigh-strength steel skeleton structure.
基金the support from the National Natural Science Foundation of China(No.52271177)the Science and Technology Innovation Leaders Projects in Hunan Province,China(No.2021RC4036).
文摘The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.
文摘We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.
文摘Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. Methods: Immunofluorescence was used for the detection of myelin-associated glycoprotein (MAG), a characteristic protein of rat oligodendrocytes (OLN-93 cells). To evaluate the potential protective effects of SSFs on OLN-93 cells injured by Aβ<sub>1-42</sub>, an injury model was established by subjecting OLN-93 cells to Aβ<sub>1-42</sub> exposed. Cell morphology was examined using an inverted microscope, while cell viability was assessed using the colorimetric method of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Additionally, lactate dehydrogenase (LDH) was measured using the pyruvic acid reduction assay. The Ginkgo biloba leaf extract (GBE) injection was used as a positive control. Results: A total of >95% of the MAG immunofluorescence-positive cells were identified as oligodendrocytes. Gradually increasing concentrations of SSFs impaired the cells, and the maximum nondetrimental dose for OLN-93 cells was 75 mg/L. This study assessed the effects of SSFs on OLN-93 cells damaged by Aβ<sub>1-42</sub>. The results indicated that SSFs significantly improved OLN-93 cell morphological abnormal changes, increased the OLN-93 cell survival rate, and reduced LDH release. Conclusion: SSFs can alleviate Aβ<sub>1-42</sub>-induced damage of OL.
文摘Ω results involving the coefficients of automorphic L-functions are important research object in analytic number theory.Let f be a primitive holomorphic cusp form.Denote by λ_(f×f)(n) the nth Fourier coefficient of Rankin-Selberg L-function L(f×f,s).This paper combines Kühleitner and Nowak′s Omega theorem and the analytic properties of Rankin-Selberg L-functions to study Omega results for coefficients of Rankin-Selberg L-functions over sparse sequences,and establishes the asymptotic formula for Σ_(n≤x)λf×f(n^(m))(m=2,3).
文摘Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.
基金Project(50371016) supported by the National Natural Science Foundation of ChinaProject(50611130629) supported by the International Cooperation and Exchange of the National Natural Science Foundation of China
文摘A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on glass forming ability(GFA) and mechanical properties of Zr55Al10Ni5Cu30 bulk metallic glass(BMG) were investigated.The results show that the addition of an appropriate amount(less than 3%,mole fraction) of Fe enhances GFA,as indicated by the increase in the reduced glass transition temperature Trg(=Tg/Tl) and the parameter γ(=Tx/(Tg+Tl)) with increasing Fe content,and GFA gets deteriorated by further Fe addition(4%).The addition of Fe also effectively improves the compressive plasticity and increases the compressive fracture strength in these Zr-based BMGs.Compressive tests on BMG sample with 3 mm in diameter and 6 mm in length reveal work-hardening and a certain plastic strain in the alloy containing 2% Fe.The BMG composite containing 4% Fe also exhibits a high fracture strength along with significant plasticity.
基金Project(51075099)supported by the National Natural Science Foundation of ChinaProject(E201038)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(HIT.NSRIF.2013007)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011RFQXG010)supported by the Harbin City Young Scientists Foundation,ChinaProject(LBH-T1102)supported by Specially Postdoctoral Science Foundation of Heilongjiang Province,China
文摘Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal experiment. The variable curves of DCF showed that the forging procedure was started in the following 35 ms after the injection procedure was completed. It was confirmed that the high-speed filling and high-pressure densifying were combined together in the DCF process. Better surface quality and higher mechanical properties were achieved in the components formed by DCF as compared to die casting (DC) due to the refined and uniform microstructure with a few defects or without defects. Injection speed affected more effectively the yield strength (YS), ultimate tensile strength (UTS) and elongation as compared to pouring temperature, die temperature and forging force. But the pouring temperature had a more significant effect on hardness as compared to injection speed, die temperature and forging force. Pouring temperature of 675 &#176;C, injection speed of 2.7 m/s and forging force of 4000 kN except for die temperature were the optimal parameters for obtaining the highest YS, UTS, elongation and Vickers hardness. Die temperatures of 205, 195, 195 and 225 &#176;C were involved in achieving the highest YS, UTS, elongation and Vickers hardness, respectively. Obvious microporosity and microcracks were found on the fracture surface of the components formed by DC, deteriorating the mechanical properties. However, the tensile fracture morphology of the components formed by DCF was characterized by ductile fracture due to a large number of dimples and no defects, which was beneficial for improving the mechanical properties.
基金Project (51175055) supported by the National Natural Science Foundation of ChinaProject (201102020) supported by the Natural Science Foundation of Liaoning Province, ChinaProject (200921085) supported by the Liaoning BaiQian Wan Talents Program, China
文摘The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.
基金Project(51005010)supported by the National Natural Science Foundation of China
文摘A modified Swift type flow stress—strain relation was presented in order to describe the uniaxial tension test curve reasonably. The FLD-strain (forming limit diagram made up of limit strain) of 5754O aluminum alloy sheet was calculated based on the two flow stress—strain relations using Yld2000-2d yield function. By comparing the theoretical and experimental results, it is found that the calculated FLD-strain based on the modified Swift flow stress—strain relation can reasonably describe the experimental results. However, though the common Voce flow stress—strain relation can describe the deformation behavior during homogenous deformation phase accurately, the FLD-strain calculated based on it is obviously lower than the experimental result. It is concluded that the higher the hardening rate of sheet metal is, the higher the forming limit is. A method for determining the reasonable flow stress—strain relation is recommended for describing the material behavior during inhomogenous phase and the forming limit of sheet metal.
文摘The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Finite element analysis models of the samples with dimensions of 180 mm×180 mm were established to analyze the friction coefficients of different interfaces. Effects of various friction coefficients on the strain distributions were studied in detail. Finally, the friction coefficients in the cold forming were determined by contrasting the strain results between the experimental data and the simulated ones.