The Fractional Cycle Bias(FCB)product is crucial for the Ambiguity Resolution(AR)in Precise Point Positioning(PPP).Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide...The Fractional Cycle Bias(FCB)product is crucial for the Ambiguity Resolution(AR)in Precise Point Positioning(PPP).Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide Lane(WL)and Narrow Lane(NL)combinations,the uncombined PPP model is flexible and effective to generate the FCB prod-ucts.This study presents the FCB estimation method based on the multi-Global Navigation Satellite System(GNSS)precise satellite orbit and clock corrections from the international GNSS Monitoring and Assessment System(iGMAS)observations using the uncombined PPP model.The dual-frequency raw ambiguities are combined by the integer coefficients(4,−3)and(1,−1)to directly estimate the FCBs.The details of FCB estimation are described with the Global Positioning System(GPS),BeiDou-2 Navigation Satellite System(BDS-2)and Galileo Navigation Satellite System(Galileo).For the estimated FCBs,the Root Mean Squares(RMSs)of the posterior residuals are smaller than 0.1 cycles,which indicates a high consistency for the float ambiguities.The stability of the WL FCBs series is better than 0.02 cycles for the three GNSS systems,while the STandard Deviation(STD)of the NL FCBs for BDS-2 is larger than 0.139 cycles.The combined FCBs have better stability than the raw series.With the multi-GNSS FCB products,the PPP AR for GPS/BDS-2/Galileo is demonstrated using the raw observations.For hourly static positioning results,the performance of the PPP AR with the three-system observations is improved by 42.6%,but only 13.1%for kinematic positioning results.The results indicate that precise and reliable positioning can be achieved with the PPP AR of GPS/BDS-2/Galileo,supported by multi-GNSS satellite orbit,clock,and FCB products based on iGMAS.展开更多
基金The National Key Research and Development Program of China(2018YFC1505102)the Programs of the National Natural Science Foundation of China(41774025,41731066)+2 种基金the Special Fund for Technological Innovation Guidance of Shaanxi Province(2018XNCGG05)the Special Fund for Basic Scientific Research of Central Colleges(CHD300102269305,CHD300102268305)the Grand Projects of the BDS-2 System(GFZX0301040308)supported this study.
文摘The Fractional Cycle Bias(FCB)product is crucial for the Ambiguity Resolution(AR)in Precise Point Positioning(PPP).Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide Lane(WL)and Narrow Lane(NL)combinations,the uncombined PPP model is flexible and effective to generate the FCB prod-ucts.This study presents the FCB estimation method based on the multi-Global Navigation Satellite System(GNSS)precise satellite orbit and clock corrections from the international GNSS Monitoring and Assessment System(iGMAS)observations using the uncombined PPP model.The dual-frequency raw ambiguities are combined by the integer coefficients(4,−3)and(1,−1)to directly estimate the FCBs.The details of FCB estimation are described with the Global Positioning System(GPS),BeiDou-2 Navigation Satellite System(BDS-2)and Galileo Navigation Satellite System(Galileo).For the estimated FCBs,the Root Mean Squares(RMSs)of the posterior residuals are smaller than 0.1 cycles,which indicates a high consistency for the float ambiguities.The stability of the WL FCBs series is better than 0.02 cycles for the three GNSS systems,while the STandard Deviation(STD)of the NL FCBs for BDS-2 is larger than 0.139 cycles.The combined FCBs have better stability than the raw series.With the multi-GNSS FCB products,the PPP AR for GPS/BDS-2/Galileo is demonstrated using the raw observations.For hourly static positioning results,the performance of the PPP AR with the three-system observations is improved by 42.6%,but only 13.1%for kinematic positioning results.The results indicate that precise and reliable positioning can be achieved with the PPP AR of GPS/BDS-2/Galileo,supported by multi-GNSS satellite orbit,clock,and FCB products based on iGMAS.