The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls ...The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination ofunbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.展开更多
In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concea...In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.展开更多
A pilot study was conducted at Penn State University to determine whether the type of drywall joint compound would influence the shear strength of wood-frame stud walls sheathed with Gypsum Wall Board (GWB or drywall)...A pilot study was conducted at Penn State University to determine whether the type of drywall joint compound would influence the shear strength of wood-frame stud walls sheathed with Gypsum Wall Board (GWB or drywall). In this study, five 2438 mm by 2438 mm specimens were tested under in-plane cyclic racking loading following the CUREE loading protocol for light-frame wall systems. Three specimens were finished using non-cement based joint compound while the other two used cement based joint compound. Based on the experimental testing of the specimens, the results show that the use of cement based joint compound on drywall joints produces higher shear capacity for the wall system as compared to similar specimens finished with conventional non-cement based joint compound. The result of the study is particularly important for high seismic regions where interior stud walls in residential construction effectively take part in seismic resistance even though wood shear walls are normally used on exterior walls.展开更多
Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is...Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is necessary to diversify the functions of high-rise buildings and complicate the building form.At present,the main structural systems of high-rise buildings are:frame structure,shear wall structure,frame shear structure,and tube structure.Different structural systems determine the size of the load-bearing capacity,lateral stiffness,and seismic performance,as well as the amount of material used and the cost.This project is mainly concerned with the seismic design of frame shear structural systems,which are widely used today.展开更多
To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovati...To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution,load transferring mechanism,and failure modes of RC infill walls filled in PR steel frame.The proposed composite compression struts model for the solid RC infill walls is composed ofαinclined struts and main diagonal struts.Theαinclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface,while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls.This study derives appropriate formulas for the effective widths of theαinclined strut and main diagonal strut,respectively.An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated.The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results,and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%.This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.展开更多
Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan.The analysis results show that this kind of composite wall panel works very w...Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan.The analysis results show that this kind of composite wall panel works very well,and can be regarded as a solid panel.The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play.Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.展开更多
基金National Natural Science Foundation of China(NSFC)under Grant Nos.51638012 and 51578401
文摘The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination ofunbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.
基金National Science and Technology Support Program of China under Grant No.2011BAJ08B02Natural Science Foundation of Beijing under Grant No.8132016Beijing City University Youth Backbone Talent Training Project under Grant No.PHR201108009
文摘In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.
文摘A pilot study was conducted at Penn State University to determine whether the type of drywall joint compound would influence the shear strength of wood-frame stud walls sheathed with Gypsum Wall Board (GWB or drywall). In this study, five 2438 mm by 2438 mm specimens were tested under in-plane cyclic racking loading following the CUREE loading protocol for light-frame wall systems. Three specimens were finished using non-cement based joint compound while the other two used cement based joint compound. Based on the experimental testing of the specimens, the results show that the use of cement based joint compound on drywall joints produces higher shear capacity for the wall system as compared to similar specimens finished with conventional non-cement based joint compound. The result of the study is particularly important for high seismic regions where interior stud walls in residential construction effectively take part in seismic resistance even though wood shear walls are normally used on exterior walls.
文摘Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is necessary to diversify the functions of high-rise buildings and complicate the building form.At present,the main structural systems of high-rise buildings are:frame structure,shear wall structure,frame shear structure,and tube structure.Different structural systems determine the size of the load-bearing capacity,lateral stiffness,and seismic performance,as well as the amount of material used and the cost.This project is mainly concerned with the seismic design of frame shear structural systems,which are widely used today.
基金National Science Foundation of China under Grant No.51108292,and Qing Lan Project of Jiangsu Province
文摘To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution,load transferring mechanism,and failure modes of RC infill walls filled in PR steel frame.The proposed composite compression struts model for the solid RC infill walls is composed ofαinclined struts and main diagonal struts.Theαinclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface,while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls.This study derives appropriate formulas for the effective widths of theαinclined strut and main diagonal strut,respectively.An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated.The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results,and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%.This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.
基金Project(50948036)supported by the National Natural Science Foundation of ChinaProject(2012H0028)supported by Key Scientific and Technological Planning Project of Fujian Province,China+2 种基金Projects(2013J01192,2013J01196)supported by Natural Science Foundation Planning Project of Fujian Province,ChinaProject(2013Z37)supported by Key Scientific and Technological Planning Project of Quanzhou City,ChinaProject(2014KJTD05)supported by Program for Scientific and Technological Innovation Team and Leading Talent of Huaqiao University,China
文摘Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan.The analysis results show that this kind of composite wall panel works very well,and can be regarded as a solid panel.The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play.Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.