We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of...We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of the dependence of high-order harmonic generation on the waveform of laser fields. The dependence is investigated via detailed analysis of the classical trajectories of the ionized electron moving in the continuum in the velocity-position plane. The classical trajectory consists of three sections (Acceleration Away, Deceleration Away, and Acceleration Back), and their relationship with the electron recollision energy is investigated. The analysis of classical trajectories indicates that, besides the final (Acceleration Back) section, the electron recollision energy also relies on the previous two sections. We simultaneously optimize the waveform in all three sections to increase the electron recollision energy, and an extension of the cutoff frequency up to Ip + 20.26Up is presented with a theoretically synthesized waveform of the laser field.展开更多
Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate.A low frequency characteristic extension for v...Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate.A low frequency characteristic extension for velocity vibration sensors is presented in this paper.The passive circuit technology,active compensation technology and the closed- cycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors.Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2010CB923102)the Special Prophase Project on the National Basic Research Program of China (Grant No. 2011CB311807)the National Natural Science Foundation of China (Grant No. 11074199)
文摘We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of the dependence of high-order harmonic generation on the waveform of laser fields. The dependence is investigated via detailed analysis of the classical trajectories of the ionized electron moving in the continuum in the velocity-position plane. The classical trajectory consists of three sections (Acceleration Away, Deceleration Away, and Acceleration Back), and their relationship with the electron recollision energy is investigated. The analysis of classical trajectories indicates that, besides the final (Acceleration Back) section, the electron recollision energy also relies on the previous two sections. We simultaneously optimize the waveform in all three sections to increase the electron recollision energy, and an extension of the cutoff frequency up to Ip + 20.26Up is presented with a theoretically synthesized waveform of the laser field.
基金The Ministry of Science and Technology Special Foundation Grant No.217Harbin Important Science Technology Foundation Grant No.0014211044
文摘Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate.A low frequency characteristic extension for velocity vibration sensors is presented in this paper.The passive circuit technology,active compensation technology and the closed- cycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors.Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.