Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform...Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.展开更多
It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative freq...It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative frequent pattern mining algorithms in the field of data mining still suffer from the problems of low time-memory performance and are not easy to scale up.In the context of such needs,we propose a related degree-based frequent pattern mining algorithm,named Related High Utility Quantitative Item set Mining(RHUQI-Miner),to enable the effective mining of railway fault data.The algorithm constructs the item-related degree structure of fault data and gives a pruning optimization strategy to find frequent patterns with higher related degrees,reducing redundancy and invalid frequent patterns.Subsequently,it uses the fixed pattern length strategy to modify the utility information of the item in the mining process so that the algorithm can control the length of the output frequent pattern according to the actual data situation and further improve the performance and practicability of the algorithm.The experimental results on the real fault dataset show that RHUQI-Miner can effectively reduce the time and memory consumption in the mining process,thus providing data support for differentiated and precise maintenance strategies.展开更多
针对现有的跨级高效用项集挖掘(HUIM)算法非常耗时且占用大量内存的问题,提出一种基于数据索引结构的跨级高效用项集挖掘算法(DISCH)。首先,为了高效存储和快速检索到搜索空间中的所有项集,拓展带有分类信息和索引信息的效用链表为数据...针对现有的跨级高效用项集挖掘(HUIM)算法非常耗时且占用大量内存的问题,提出一种基于数据索引结构的跨级高效用项集挖掘算法(DISCH)。首先,为了高效存储和快速检索到搜索空间中的所有项集,拓展带有分类信息和索引信息的效用链表为数据索引结构(DIS);然后,为了提高内存利用率,对不满足条件的效用链表所占的内存进行回收再分配;最后,在构建效用链表时使用提前结束策略,以减少效用链表的产生。基于真实零售数据集和合成数据集进行的实验结果表明,与CLH-Miner(Cross-Level High utility itemsets Miner)算法相比,DISCH在运行时间上平均降低了77.6%,同时在内存消耗上平均降低了73.3%,可见该算法能高效完成跨级高效用项集的搜索,并且降低算法的内存消耗。展开更多
为了挖掘满足用户特殊需求,如含指定项目数量的高效用项集(HUI),提出一种基于长度约束的蝙蝠高效用项集挖掘算法(HUIM-LC-BA)。该算法融合蝙蝠算法(BA)和长度约束构建高效用项集挖掘(HUIM)模型,首先将数据库转换为位图矩阵,实现高效的...为了挖掘满足用户特殊需求,如含指定项目数量的高效用项集(HUI),提出一种基于长度约束的蝙蝠高效用项集挖掘算法(HUIM-LC-BA)。该算法融合蝙蝠算法(BA)和长度约束构建高效用项集挖掘(HUIM)模型,首先将数据库转换为位图矩阵,实现高效的效用计算和数据库扫描;其次,采用重新定义的事务加权效用(RTWU)策略缩减搜索空间;最后,对项集进行长度修剪,使用深度优先搜索和轮盘赌注选择法确定修剪项目。在4个数据集的仿真实验中,当最大长度为6时,与HUIM-BA相比,HUIM-LC-BA挖掘的模式数量分别减少了91%、98%、99%与97%,同时运行时间也少于HUIM-BA;且在不同长度约束条件下,与FHM+(Faster High-utility itemset Ming plus)算法相比运行时间更稳定。实验结果表明,HUIM-LC-BA能有效挖掘具有长度约束的HUI,并减少挖掘模式的数量。展开更多
Mining high-utility itemsets (HUIs) from a transaction database refers to the discovery of itemsets with high utilities like profits. Most of existing studies discover HUIs from a transaction database in two phases....Mining high-utility itemsets (HUIs) from a transaction database refers to the discovery of itemsets with high utilities like profits. Most of existing studies discover HUIs from a transaction database in two phases. In phase 1, different overestimation methods are applied to calculate the upper bounds of the utilities of itemsets. Since the overestimated utilities of itemsets are adopted, the itemsets whose overestimated utilities are no less than a user-specified threshold are selected as candidate HUIs, and they are verified by scanning the database one more time in phase 2. However, a large number of candidate HUIs incur two problems: 1) it requires excessive memory to store these candidates; 2) it needs a large amount of running time to calculate their exact utilities. Vertical data format has been applied to mine HUIs recently. However this kind of method cannot deal with transactions with the same items effectively so that the size of database cannot be reduced sufficiently. The overall performance of algorithms is degraded consequently. Thus an algorithm HUITWU is proposed in this paper for mining HUIs. A novel data structure HUITwu-Tree is adopted to efficiently calculate the utilities of itemsets in a database. Extensive studies with both sparse and dense datasets have demonstrated that our proposed algorithm is more than an order of magnitude faster and consumes less memory than the state-of-the-art algorithms.展开更多
基金This work was supported by the National Natural Science Foundation of China(62073155,62002137,62106088,62206113)the High-End Foreign Expert Recruitment Plan(G2023144007L)the Fundamental Research Funds for the Central Universities(JUSRP221028).
文摘Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.
基金supported by the Research on Key Technologies and Typical Applications of Big Data in Railway Production and Operation(P2023S006)the Fundamental Research Funds for the Central Universities(2022JBZY023).
文摘It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative frequent pattern mining algorithms in the field of data mining still suffer from the problems of low time-memory performance and are not easy to scale up.In the context of such needs,we propose a related degree-based frequent pattern mining algorithm,named Related High Utility Quantitative Item set Mining(RHUQI-Miner),to enable the effective mining of railway fault data.The algorithm constructs the item-related degree structure of fault data and gives a pruning optimization strategy to find frequent patterns with higher related degrees,reducing redundancy and invalid frequent patterns.Subsequently,it uses the fixed pattern length strategy to modify the utility information of the item in the mining process so that the algorithm can control the length of the output frequent pattern according to the actual data situation and further improve the performance and practicability of the algorithm.The experimental results on the real fault dataset show that RHUQI-Miner can effectively reduce the time and memory consumption in the mining process,thus providing data support for differentiated and precise maintenance strategies.
文摘针对现有的跨级高效用项集挖掘(HUIM)算法非常耗时且占用大量内存的问题,提出一种基于数据索引结构的跨级高效用项集挖掘算法(DISCH)。首先,为了高效存储和快速检索到搜索空间中的所有项集,拓展带有分类信息和索引信息的效用链表为数据索引结构(DIS);然后,为了提高内存利用率,对不满足条件的效用链表所占的内存进行回收再分配;最后,在构建效用链表时使用提前结束策略,以减少效用链表的产生。基于真实零售数据集和合成数据集进行的实验结果表明,与CLH-Miner(Cross-Level High utility itemsets Miner)算法相比,DISCH在运行时间上平均降低了77.6%,同时在内存消耗上平均降低了73.3%,可见该算法能高效完成跨级高效用项集的搜索,并且降低算法的内存消耗。
文摘为了挖掘满足用户特殊需求,如含指定项目数量的高效用项集(HUI),提出一种基于长度约束的蝙蝠高效用项集挖掘算法(HUIM-LC-BA)。该算法融合蝙蝠算法(BA)和长度约束构建高效用项集挖掘(HUIM)模型,首先将数据库转换为位图矩阵,实现高效的效用计算和数据库扫描;其次,采用重新定义的事务加权效用(RTWU)策略缩减搜索空间;最后,对项集进行长度修剪,使用深度优先搜索和轮盘赌注选择法确定修剪项目。在4个数据集的仿真实验中,当最大长度为6时,与HUIM-BA相比,HUIM-LC-BA挖掘的模式数量分别减少了91%、98%、99%与97%,同时运行时间也少于HUIM-BA;且在不同长度约束条件下,与FHM+(Faster High-utility itemset Ming plus)算法相比运行时间更稳定。实验结果表明,HUIM-LC-BA能有效挖掘具有长度约束的HUI,并减少挖掘模式的数量。
基金This work is partly supported by the National Basic Research 973 Program of China under Grant No. 2012CB316200 and the National Natural Science Foundation of China under Grant Nos. 61190115 and 61173022.
文摘Mining high-utility itemsets (HUIs) from a transaction database refers to the discovery of itemsets with high utilities like profits. Most of existing studies discover HUIs from a transaction database in two phases. In phase 1, different overestimation methods are applied to calculate the upper bounds of the utilities of itemsets. Since the overestimated utilities of itemsets are adopted, the itemsets whose overestimated utilities are no less than a user-specified threshold are selected as candidate HUIs, and they are verified by scanning the database one more time in phase 2. However, a large number of candidate HUIs incur two problems: 1) it requires excessive memory to store these candidates; 2) it needs a large amount of running time to calculate their exact utilities. Vertical data format has been applied to mine HUIs recently. However this kind of method cannot deal with transactions with the same items effectively so that the size of database cannot be reduced sufficiently. The overall performance of algorithms is degraded consequently. Thus an algorithm HUITWU is proposed in this paper for mining HUIs. A novel data structure HUITwu-Tree is adopted to efficiently calculate the utilities of itemsets in a database. Extensive studies with both sparse and dense datasets have demonstrated that our proposed algorithm is more than an order of magnitude faster and consumes less memory than the state-of-the-art algorithms.