期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Frequentist and Bayesian Sample Size Determination for Single-Arm Clinical Trials Based on a Binary Response Variable: A Shiny App to Implement Exact Methods
1
作者 Susanna Gentile Valeria Sambucini 《Open Journal of Statistics》 2024年第1期90-105,共16页
Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct ... Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach. 展开更多
关键词 Binomial Proportion frequentist and Bayesian Power Functions Exact Sample Size Determination Shiny App Two-Priors Approach
下载PDF
二项分布的Frequentist、Bayesian、Fiducial预测 被引量:1
2
作者 周源泉 李宝盛 《质量与可靠性》 2008年第3期10-12,共3页
研究二项分布随机变量的预测问题.给定过去样本,给出了未来样本成功数的Frequentist(经典方法)预测子,并给出了Frequentist、Bayesian(贝叶斯方法)以及Fiducial (信赖方法)预测区间。
关键词 二项分布 预测 frequentist(经典方法) Bayesian(贝叶斯方法) Fiducial(信赖方法)
下载PDF
Effects of Bayesian Model Selection on Frequentist Performances: An Alternative Approach
3
作者 Georges Nguefack-Tsague Walter Zucchini 《Applied Mathematics》 2016年第10期1103-1115,共14页
It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selectio... It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selection estimator (PMSE) whose properties are hard to derive. Conditioning on data at hand (as it is usually the case), Bayesian model selection is free of this phenomenon. This paper is concerned with the properties of Bayesian estimator obtained after model selection when the frequentist (long run) performances of the resulted Bayesian estimator are of interest. The proposed method, using Bayesian decision theory, is based on the well known Bayesian model averaging (BMA)’s machinery;and outperforms PMSE and BMA. It is shown that if the unconditional model selection probability is equal to model prior, then the proposed approach reduces BMA. The method is illustrated using Bernoulli trials. 展开更多
关键词 Model Selection Uncertainty Model Uncertainty Bayesian Model Selection Bayesian Model Averaging Bayesian Theory frequentist Performance
下载PDF
Frequentist Model Averaging and Applications to Bernoulli Trials
4
作者 Georges Nguefack-Tsague Walter Zucchini Siméon Fotso 《Open Journal of Statistics》 2016年第3期545-553,共9页
In several instances of statistical practice, it is not uncommon to use the same data for both model selection and inference, without taking account of the variability induced by model selection step. This is usually ... In several instances of statistical practice, it is not uncommon to use the same data for both model selection and inference, without taking account of the variability induced by model selection step. This is usually referred to as post-model selection inference. The shortcomings of such practice are widely recognized, finding a general solution is extremely challenging. We propose a model averaging alternative consisting on taking into account model selection probability and the like-lihood in assigning the weights. The approach is applied to Bernoulli trials and outperforms Akaike weights model averaging and post-model selection estimators. 展开更多
关键词 Model Selection Post-Model Selection Estimator frequentist Model Averaging Bernoulli Trials
下载PDF
FREQUENTIST MODEL AVERAGING ESTIMATION:A REVIEW 被引量:16
5
作者 Haiying WANG Xinyu ZHANG Guohua ZOU Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China. 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第4期732-748,共17页
In applications, the traditional estimation procedure generally begins with model selection.Once a specific model is selected, subsequent estimation is conducted under the selected model withoutconsideration of the un... In applications, the traditional estimation procedure generally begins with model selection.Once a specific model is selected, subsequent estimation is conducted under the selected model withoutconsideration of the uncertainty from the selection process. This often leads to the underreportingof variability and too optimistic confidence sets. Model averaging estimation is an alternative to thisprocedure, which incorporates model uncertainty into the estimation process. In recent years, therehas been a rising interest in model averaging from the frequentist perspective, and some importantprogresses have been made. In this paper, the theory and methods on frequentist model averagingestimation are surveyed. Some future research topics are also discussed. 展开更多
关键词 Adaptive regression asymptotic theory frequentist model averaging model selection optimality.
原文传递
基于频率统计和贝叶斯统计的零事件率区间估计方法比较研究
6
作者 刘晋 Tianxin Shi +1 位作者 赵杨 邵方 《中国卫生统计》 CSCD 北大核心 2023年第1期15-19,26,共6页
目的零事件率是当抽样事件数为零时二项率的一种特殊情形,对其区间估计缺乏深入研究。方法利用二项分布和贝塔分布的关系,使用SAS 9.8设计三层嵌套9.4亿个参数空间点的计算密集型模拟实验,从区间精度、准确度和基于精确法的相对误差三... 目的零事件率是当抽样事件数为零时二项率的一种特殊情形,对其区间估计缺乏深入研究。方法利用二项分布和贝塔分布的关系,使用SAS 9.8设计三层嵌套9.4亿个参数空间点的计算密集型模拟实验,从区间精度、准确度和基于精确法的相对误差三个方面比较了三种频率方法和两种贝叶斯方法区间估计的统计性能,并通过医学实例说明其应用。结果首次报告了在保证覆盖率满足名义水平的条件下,精确法优于Wilson近似法的临界样本量。在平衡估计精度(区间宽度)和估计准确度(覆盖率)的思想指导下,通过大规模统计模拟和实例分析,推荐使用精确法进行零事件率的区间估计。结论随着医学技术的进步,零事件率越来越多地出现在医学研究中,在对这一特殊率进行统计推断时,推荐使用精确法。 展开更多
关键词 零事件率 频率统计 贝叶斯统计 区间估计
下载PDF
定数截尾时,Weibull分布的Bayes双样预测 被引量:1
7
作者 周源泉 朱新伟 黄兴东 《质量与可靠性》 2007年第2期14-19,共6页
对定数截尾时的Weibull分布,介绍了无信息先验分布下的Bayes等尾精确预测区间,讨论了它的计算方法,指出了平方损失下Bayes预测子不存在,给出了Frequentist预测子,并用数值例说明之。
关键词 可靠性工程 WEIBULL分布 定数截尾 双样预测 Bayes预测区间 无信息先验分布 计算方法 frequentist预测子
下载PDF
完全样本时,(对数)正态分布未来样本顺序统计量的Bayesian与Fiducial预测下限 被引量:2
8
作者 周源泉 《质量与可靠性》 2010年第1期1-3,8,共4页
在过去样本为完全样本时,本文给出了共轭型先验与群不变先验下,(对数)正态分布的双样Bayes预测下限与Fiducial预测下限,并指出可信水平为γ时,群不变先验下的Bayes预测下限与Fiducial水平为γ时的Fiducial预测下限,与Fertig&Mann(19... 在过去样本为完全样本时,本文给出了共轭型先验与群不变先验下,(对数)正态分布的双样Bayes预测下限与Fiducial预测下限,并指出可信水平为γ时,群不变先验下的Bayes预测下限与Fiducial水平为γ时的Fiducial预测下限,与Fertig&Mann(1977)给出的置信水平为γ时的Frequentist预测下限在数值上相等。 展开更多
关键词 统计预测 (对数)正态分布 双样预测下限 frequentist方法 BAYES方法 Fiducial方法 共轭型先验(Conjugate prior) 群不变先验(Group—invariant prior)
下载PDF
指数分布的Bayes单样与双样预测区间 被引量:1
9
作者 周源泉 《质量与可靠性》 2009年第4期4-7,共4页
给出了共轭型先验分布下,指数分布的Bayes单样与双样预测区间,指出了它们与Dunsmore(1974)给出的Bayes预测pdf的关系,并讨论了它们与Frequentist预测区间之间的关系。
关键词 指数分布 单样预测区间 双样预测区间 BAYES方法 frequentist方法 Bayes预测分布
下载PDF
双参数指数分布的单、双样Bayes预测区间 被引量:1
10
作者 周源泉 《质量与可靠性》 2009年第5期4-8,共5页
对双参数指数分布,给出了共轭型先验与无信息先验下的单样与双样的Bayes预测区间,并指出无信息先验下的Bayes预测区间与Frequentist预测区间在数值上相等。
关键词 双参数指数分布 单样预测 双样预测 BAYES方法 frequentist方法 共轭型先验 无信息先验 Bayes预测密度
下载PDF
定数截尾时,Weibull分布的Bayes单样预测
11
作者 周源泉 黄兴东 朱新伟 《质量与可靠性》 2007年第3期5-8,23,共5页
对定数截尾时的Weibull分布的单样预测,介绍了无信息先验分布下的Bayes精确等尾预测区间,给出了其计算方法,指出了平方损失下,Bayes预测子不存在,介绍了Frequentist (经典)预测子,并用数值例说明之。
关键词 可靠性工程 WEIBULL分布 定数截尾 单样预测 Bayes预测区间 无信息先验分布 计算方法 frequentist预测子
下载PDF
二项分布的预测
12
作者 周源泉 李宝盛 《质量与可靠性》 2012年第1期1-3,共3页
对二项分布进行了Frequentist、Bayesian与Fiducial预测及其优良性比较,以数值例作了说明。
关键词 统计预测 二项分布 frequentist方法 Bayesian方法 Fiducial方法
下载PDF
PLP与HPP的单样预测
13
作者 周源泉 《质量与可靠性》 2013年第2期5-8,共4页
对故障终止的PLP与HPP改进了Engelhardt & Bain的Frequentist单样预测区间(PI),给出了单样预测的预测子,群不变先验下的Bayes单样PI与Fiducial单样PI,指出3种方法的PI在数值上相等,给出了应用于存在显著可靠性增长且可用PLP拟合的... 对故障终止的PLP与HPP改进了Engelhardt & Bain的Frequentist单样预测区间(PI),给出了单样预测的预测子,群不变先验下的Bayes单样PI与Fiducial单样PI,指出3种方法的PI在数值上相等,给出了应用于存在显著可靠性增长且可用PLP拟合的失败终止的成败型离散数据的方法,并用数值例予以说明。 展开更多
关键词 统计预测 幂律过程(PLP)Poisson过程(HPP) 单样预测 预测区间(PI)frequentist方法Bayes方法Fiducial方法
下载PDF
贝叶斯因子及其在JASP中的实现 被引量:48
14
作者 胡传鹏 孔祥祯 +2 位作者 Eric-Jan Wagenmakers Alexander Ly 彭凯平 《心理科学进展》 CSSCI CSCD 北大核心 2018年第6期951-965,共15页
统计推断在科学研究中起到关键作用,然而当前科研中最常用的经典统计方法——零假设检验(Null hypothesis significance test,NHST)却因难以理解而被部分研究者误用或滥用。有研究者提出使用贝叶斯因子(Bayes factor)作为一种替代和(或... 统计推断在科学研究中起到关键作用,然而当前科研中最常用的经典统计方法——零假设检验(Null hypothesis significance test,NHST)却因难以理解而被部分研究者误用或滥用。有研究者提出使用贝叶斯因子(Bayes factor)作为一种替代和(或)补充的统计方法。贝叶斯因子是贝叶斯统计中用来进行模型比较和假设检验的重要方法,其可以解读为对零假设H_0或者备择假设H_1的支持程度。其与NHST相比有如下优势:同时考虑H_0和H_1并可以用来支持H_0、不"严重"地倾向于反对H_0、可以监控证据强度的变化以及不受抽样计划的影响。目前,贝叶斯因子能够很便捷地通过开放的统计软件JASP实现,本文以贝叶斯t检验进行示范。贝叶斯因子的使用对心理学研究者来说具有重要的意义,但使用时需要注意先验分布选择的合理性以及保持数据分析过程的透明与公开。 展开更多
关键词 贝叶斯因子 贝叶斯学派 频率学派 假设检验 JASP
下载PDF
潜变量建模的贝叶斯方法 被引量:19
15
作者 王孟成 邓俏文 毕向阳 《心理科学进展》 CSSCI CSCD 北大核心 2017年第10期1682-1695,共14页
贝叶斯统计是统计学的两大流派之一,近年来贝叶斯统计在社会及行为科学领域日益流行。鉴于国内心理学界对贝叶斯统计应用仍不广泛,本文尝试从非技术性的角度对贝叶斯统计用于潜变量建模的过程进行简要介绍。主要涉及贝叶斯与频率论在统... 贝叶斯统计是统计学的两大流派之一,近年来贝叶斯统计在社会及行为科学领域日益流行。鉴于国内心理学界对贝叶斯统计应用仍不广泛,本文尝试从非技术性的角度对贝叶斯统计用于潜变量建模的过程进行简要介绍。主要涉及贝叶斯与频率论在统计学基本概念上的对比;贝叶斯统计的基本原理和分析过程。最后以一个验证性因子分析为例,简要介绍贝叶斯统计用于潜变量建模的分析过程。希望本文能为国内心理学者进行潜变量建模提供新的视角。 展开更多
关键词 贝叶斯 频率论 潜变量建模 Mplus
下载PDF
网络Meta分析研究进展系列(二):网络Meta分析统计模型及模型拟合软件选择 被引量:6
16
作者 张天嵩 孙凤 +3 位作者 董圣杰 杨智荣 武珊珊 田金徽 《中国循证心血管医学杂志》 2020年第7期769-774,793,共7页
本文系统梳理了目前网络Meta分析(NMA)的常用统计模型、建模策略、分析策略和统计软件,并给出合理选择NMA模型和软件的建议,以期提高NMA制定者和使用者规范实施和解读NMA的能力。
关键词 网络Meta分析 统计模型 贝叶斯策略 频率学策略 统计软件
下载PDF
基于MCMC模拟的期货最优套保比贝叶斯分析 被引量:1
17
作者 付剑茹 张宗成 龚金林 《管理工程学报》 CSSCI 北大核心 2009年第3期120-125,共6页
计量经济模型总风险由模型(误设)风险和估计风险构成。本文同时运用基于频率统计的后视计量经济模型和基于MCMC模拟的贝叶斯方法对我国铜期货市场不同套期保值期限的最优套期保值比进行实证分析。实证结果清楚表明,估计风险对模型结果... 计量经济模型总风险由模型(误设)风险和估计风险构成。本文同时运用基于频率统计的后视计量经济模型和基于MCMC模拟的贝叶斯方法对我国铜期货市场不同套期保值期限的最优套期保值比进行实证分析。实证结果清楚表明,估计风险对模型结果有重要影响。在处理估计风险方面,贝叶斯方法较频率统计方法有明显优势。另外,套期保值效率与套期保值期限之间的正相关关系在本研究中得到确定,无论是基于频率统计,还是基于贝叶斯统计。 展开更多
关键词 估计风险 贝叶斯统计 频率统计 MCMC模拟 套期保值
下载PDF
故障终止时,HPP故障数的双样和多样预测 被引量:5
18
作者 周源泉 李宝盛 《强度与环境》 2008年第5期49-54,共6页
研究了故障终止时,齐次Poisson过程未来故障数的预测问题,根据已出现的故障数和终止时间,给出了未来故障数的经典(Frequentist)点估计、经典精确预测区间、正态近似预测区间、Bayesian精确预测区间、极大后验点估计、Fiducial预测区间。
关键词 预测 POISSON过程 故障数 经典精确预测区间 Bayesian精确预测区间
下载PDF
Differences in parameter estimates derived from various methods for the ORYZA(v3) Model
19
作者 TAN Jun-wei DUAN Qing-yun +1 位作者 GONG Wei DI Zhen-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第2期375-388,共14页
Parameter estimation is always a difficult issue for crop model users, and inaccurate parameter values will result in deceptive model predictions. Parameter values may vary with different inversion methods due to equi... Parameter estimation is always a difficult issue for crop model users, and inaccurate parameter values will result in deceptive model predictions. Parameter values may vary with different inversion methods due to equifinality and differences in the estimating processes. Therefore, it is of great importance to evaluate the factors which may influence parameter estimates and to make a comparison of the current widely-used methods. In this study, three popular frequentist methods(SCE-UA, GA and PEST) and two Bayesian-based methods(GLUE and MCMC-AM) were applied to estimate nine cultivar parameters using the ORYZA(v3) Model. The results showed that there were substantial differences between the parameter estimates derived by the different methods, and they had strong effects on model predictions. The parameter estimates given by the frequentist methods were obviously sensitive to initial values, and the extent of the sensitivity varied with algorithms and objective functions. Among the frequentist methods, the SCE-UA was recommended due to the balance between stable convergence and high efficiency. All the parameter estimates remarkably improved the goodness of model-fit, and the parameter estimates derived from the Bayesian-based methods had relatively worse performance compared to the frequentist methods. In particular, the parameter estimates with the highest probability density of posterior distributions derived from the MCMC-AM method(MCMC_P_(max)) led to results equivalent to those derived from the frequentist methods, and even better in some situations. Additionally, model accuracy was greatly influenced by the values of phenology parameters in validation. 展开更多
关键词 parameter estimation frequentist method Bayesian method crop model CALIBRATION
下载PDF
A Mixture-Based Bayesian Model Averaging Method
20
作者 Georges Nguefack-Tsague Walter Zucchini 《Open Journal of Statistics》 2016年第2期220-228,共9页
Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator ar... Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator are hard to derive. This paper proposes a mixture of priors and sampling distributions as a basic of a Bayes estimator. The frequentist properties of the new Bayes estimator are automatically derived from Bayesian decision theory. It is shown that if all competing models have the same parametric form, the new Bayes estimator reduces to BMA estimator. The method is applied to the daily exchange rate Euro to US Dollar. 展开更多
关键词 MIXTURE Bayesian Model Selection Bayesian Model Averaging Bayesian Theory frequentist Performance
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部