期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Suppressing the Undesirable Energy Loss in Solution-Processed Hyperfluorescent OLEDs Employing BODIPY-Based Hybridized Local and Charge-Transfer Emitter
1
作者 Xuewei Nie Zafar Mahmood +7 位作者 Denghui Liu Mengke Li Dehua Hu Wencheng Chen Longjiang Xing Shijian Su Yanping Huo Shaomin Ji 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期372-380,共9页
Hyperfluorescent organic light-emitting diodes(HF-OLEDs)approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter.Despite sign... Hyperfluorescent organic light-emitting diodes(HF-OLEDs)approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter.Despite significant progress,the performance of HF-OLEDs is still unsatisfactory due to the existence of a competitive dexter energy transfer(DET)pathway.In this contribution,two boron dipyrromethene(BODIPY)-based donor-acceptor emitters(BDP-C-Cz and BDP-N-Cz)with hybridized local and charge transfer characteristics(HLCT)are introduced in the HF-OLED to suppress the exciton loss by dexter mechanism,and a breakthrough performance with low-efficiency roll-off(0.3%)even at high brightness(1000 cd m^(-2))is achieved.It is demonstrated that the energy loss via the DET channel can be suppressed in HF-OLEDs utilizing the HLCT emitter,as the excitons from the dark triplet state of such emitters are funneled to its emissive singlet state following the hot-exciton mechanism.The developed HF-OLED device has realized a good maximum external quantum efficiency(EQE)of 19.25%at brightness of 1000 cd m^(-2)and maximum luminance over 60000 cd m^(-2),with an emission peak at 602 nm and Commission International de L'Eclairage(CIE)coordinates(0.57,0.41),which is among the best-achieved results in solution-processed HF-OLEDs.This work presents a viable methodology to suppress energy loss and achieve high performance in the HF-OLEDs. 展开更多
关键词 BODIPY hyperfluorescence organic light-emitting diodes solution-process
下载PDF
Enhanced performance of solution-processed carbon nanotube transparent electrodes in foldable perovskite solar cells through vertical separation of binders by using eco-friendly parylene substrate
2
作者 Unsoo Kim Jeong-Seok Nam +3 位作者 Jungjin Yoon Jiye Han Mansoo Choi Il Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期83-93,共11页
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat... The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules. 展开更多
关键词 double-walled carbon nanotubes parylene substrates perovskite modules perovskite solar cells solution-processable electrodes surfactant removal
下载PDF
Solution-processing approach of nanomaterials toward an artificial sensory system
3
作者 Okin Song Youngwook Cho +1 位作者 Soo-Yeon Cho Joohoon Kang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期1-19,共19页
Artificial sensory systems have emerged as pivotal technologies to bridge the gap between the virtual and real-world,replicating human senses to interact intelligently with external stimuli.To practically apply artifi... Artificial sensory systems have emerged as pivotal technologies to bridge the gap between the virtual and real-world,replicating human senses to interact intelligently with external stimuli.To practically apply artificial sensory systems in the real-world,it is essential to mass-produce nanomaterials with ensured sensitivity and selectivity,purify them for desired functions,and integrate them into large-area sensory devices through assembly techniques.A comprehensive understanding of each process parameter from material processing to device assembly is crucial for achieving a high-performing artificial sensory system.This review provides a technological framework for fabricating high-performance artificial sensory systems,covering material processing to device integrations.We introduce recent approaches for dispersing and purifying various nanomaterials including 0D,1D,and 2D nanomaterials.We then highlight advanced coating and printing techniques of the solution-processed nanomaterials based on representative three methods including(i)evaporation-based assembly,(ii)assisted assembly,and(iii)direct patterning.We explore the application and performances of these solution-processed materials and printing methods in fabricating sensory devices mimicking five human senses including vision,olfaction,gustation,hearing,and tactile perception.Finally,we suggest an outlook for possible future research directions to solve the remaining challenges of the artificial sensory systems such as ambient stability,device consistency,and integration with AI-based software. 展开更多
关键词 artificial sensory system NANOMATERIALS solution-processing PRINTING SENSOR
下载PDF
Inorganic and Organic Solution-Processed Thin Film Devices 被引量:6
4
作者 Morteza Eslamian 《Nano-Micro Letters》 SCIE EI CAS 2017年第1期16-38,共23页
Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materia... Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution. 展开更多
关键词 Organic electronics Photovoltaics Thin film transistors Thermoelectric devices Organic light-emitting diodes Smart materials Sensors and actuators solution-processed methods
下载PDF
Construction of a cement-rebar nanoarchitecture for a solution-processed and flexible film of a Bi_(2)Te_(3)/CNT hybrid toward low thermal conductivity and high thermoelectric performance
5
作者 Zhijun Chen Haicai Lv +2 位作者 Qichun Zhang Hanfu Wang Guangming Chen 《Carbon Energy》 SCIE CAS 2022年第1期115-128,共14页
Solution processability and flexibility still remain major challenges for many thermoelectric(TE)materials,including bismuth telluride(Bi_(2)Te_(3)),a typical and commercially available TE material.Here,we report a ne... Solution processability and flexibility still remain major challenges for many thermoelectric(TE)materials,including bismuth telluride(Bi_(2)Te_(3)),a typical and commercially available TE material.Here,we report a new solutionprocessed method to prepare a flexible film of a Bi_(2)Te_(3)/single-walled carbon nanotube(SWCNT)hybrid,where the dissolved Bi_(2)Te_(3) ion precursors are mixed with dispersed SWCNTs in solution and recrystallized on the SWCNT surfaces to form a“cement-rebar”-like architecture.The hybrid film shows an n-type characteristic,with a stable Seebeck coefficient of^(−1)00.00±1.69μVK^(−1) in air.Furthermore,an extremely low in-plane thermal conductivity of∼0.33Wm^(−1) K^(−1) is achieved at 300 K,and the figure of merit(ZT)reaches 0.47±0.02.In addition,the TE performance is independent of mechanical bending.The unique“cement-rebar”-like architecture is believed to be responsible for the excellent TE performances and the high flexibility.The results provide a new avenue for the fabrication of solution-processable and flexible TE hybrid films and will speed up the applications of flexible electronics and energy conversion. 展开更多
关键词 Bi_(2)Te_(3) carbon nanotube HYBRID solution-processed THERMOELECTRICS
下载PDF
GO-induced effective interconnection layer for all solution-processed tandem quantum dot light-emitting diodes
6
作者 JIANG Hao-hong SU Hang +1 位作者 CHEN Li-xiang TAN Xing-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3737-3746,共10页
Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state ligh... Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state lighting in the future.The TQLED is a multilayer structure device which connects two or more light-emitting units by using an interconnection layer(ICL),which plays an extremely important role in the TQLED.Therefore,realizing an effective ICL is the key to obtain high-efficiency TQLEDs.In this work,the p-type materials polys(3,4-ethylenedioxythiophene),poly(styrenesulfonate)(PEDOT:PSS)and the n-type material zinc magnesium oxide(ZnMgO),were used,and an effective hybrid ICL,the PEDOT:PSS-GO/ZnMgO,was obtained by doping graphene oxide(GO)into PEDOT:PSS.The effect of GO additive on the ICL was systematically investigated.It exhibits that the GO additive brought the fine charge carrier generation and injection capacity simultaneously.Thus,the all solutionprocessed red TQLEDs were prepared and characterized for the first time.The maximum luminance of 40877 cd/m^(2) and the highest current efficiency of 19.6 cd/A were achieved,respectively,showing a 21%growth and a 51%increase when compared with those of the reference device without GO.The encouraging results suggest that our investigation paves the way for efficient all solution-processed TQLEDs. 展开更多
关键词 tandem quantum dot light-emitting diodes all solution-processed interconnection layer graphene oxide current efficiency
下载PDF
Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors
7
作者 项兰义 应俊 +2 位作者 韩金花 王伟 谢文法 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期167-170,共4页
Polymer field-effect transistors operated in the n-channel model with a top-gate/bottom-contact are processed using a solution method. The transistor performance depends on the gate dielectric layer. A high performanc... Polymer field-effect transistors operated in the n-channel model with a top-gate/bottom-contact are processed using a solution method. The transistor performance depends on the gate dielectric layer. A high performance polymer transistor is achieved, with the saturated electron mobility of about 0.46cm2/Vs, threshold voltage nearly 0 V and subthreshold sway of about 0.9 V/decade, employing a polystyrene (PS) dielectric layer. The transistor performances are further improved with increasing current and lower operation voltages by utilizing a bi-layer gate dielectric, comprising a thin PS dielectric layer adjacent to the semiconductor to minimize the density of the interface traps for obtaining a small VT, a large μ and a poly(methyl methacrylate) (PMMA) dielectric layer with a relatively high-k adjacent to the gate electrode for enlarging the capacitance, processed from the orthogonal solvents. 展开更多
关键词 solution-processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors PS
原文传递
Thermally cross-linkable hole-transport materials enable solution-processed blue OLED with LT95 over 150 h
8
作者 Xinkang Zhang Hao Yan +1 位作者 Xiaopeng Zhang Hong Meng 《Science China Materials》 SCIE EI CAS CSCD 2024年第9期2767-2777,共11页
The solution-processed method for organic light-emitting diodes(OLEDs)offers the benefits of cost-effectiveness and enhanced material utilization.In the multilayer architecture of solution-processed OLEDs(SOLEDs),the ... The solution-processed method for organic light-emitting diodes(OLEDs)offers the benefits of cost-effectiveness and enhanced material utilization.In the multilayer architecture of solution-processed OLEDs(SOLEDs),the role of hole-transport materials(HTMs)is pivotal for cascade hole injection.However,commercial HTMs such as poly-(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine)(TFB)are hampered by incompatible energy levels and redissolution with overlayer solvent,prompting the exploration of cross-linkable HTMs(X-HTMs)for better performance.In this study,we have developed two novel small-molecule X-HTMs,N^(1),N^(1)′-((perfluoropropane-2,2-diyl)bis(4,1-phenylene))bis(N^(4),N^(4)-diphenyl-N^(1)-(4-vinylphenyl)benzene-1,4-diamine)(FTPA-V)and N,N′-((perfluoropropane-2,2-diyl)bis-(4,1-phenylene))bis(9-phenyl-N-(4-vinylphenyl)-9H-carbazol-3-amine)(FPCz-V),which incorporate thermally cross-linkable vinyl groups and electron-rich trifluoromethyl units.The X-HTMs enhance interfacial contact through superior film formation and solvent resistance,along with optimal energy levels.The application of X-HTMs significantly enhances the efficiencies and longevities of blue,green,and red SOLEDs.Specially,blue SOLED incorporating FPCz-V exhibits unprecedented lifetime(LT95)extending to over 150 h,setting a new record for blue SOLEDs.The electrochemistry stability,high bond dissociation energy,and triplet energy levels of X-HTMs can effectively minimize exciton annihilation and prolong the lifetime.These findings underscore the potential of X-HTM optimization to propel the development of stable solution-processed luminescent technologies. 展开更多
关键词 solution-processed OLED cross-linkable HTMs solvent resistance bond dissociation energy exciton-polaron annihilation
原文传递
Rational molecular design of efficient yellow-red dendrimer TADF for solution-processed OLEDs: a combined effect of substitution position and strength of the donors
9
作者 Changfeng Si Dianming Sun +3 位作者 Tomas Matulaitis David B.Cordes Alexandra M.Z.Slawin Eli Zysman-Colman 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1613-1623,共11页
The development of high-performance solution-processed red organic light-emitting diodes(OLEDs) remains a challenge,particularly in terms of maintaining efficiency at high luminance. Here, we designed and synthesized ... The development of high-performance solution-processed red organic light-emitting diodes(OLEDs) remains a challenge,particularly in terms of maintaining efficiency at high luminance. Here, we designed and synthesized four novel orange-red thermally activated delayed fluorescence(TADF) dendrimers that are solution-processable: 2GCz BP, 2DPACz BP, 2FBP2GCz and 2FBP2DPACz. We systematically investigated the effect of substitution position and strength of donors on the optoelectronic properties. The reverse intersystem crossing rate constant(kRISC) of the emitters having donors substituted at positions 11and 12 of the dibenzo[a,c]phenazine(BP) is more than 10-times faster than that of compounds substituted having donors substituted at positions 3 and 6. Compound 2DPACz BP, containing stronger donors than 2GCz BP, exhibits a red-shifted emission and smaller singlet-triplet energy splitting, ΔE_(ST), of 0.01 e V. The solution-processed OLED with 10 wt% 2DPACz BP doped in m CP emitted at 640 nm and showed a maximum external quantum efficiency(EQE_(max)) of 7.8%, which was effectively maintained out to a luminance of 1,000 cd m-2. Such a device's performance at relevant display luminance is among the highest for solution-processed red TADF OLEDs. The efficiency of the devices was improved significantly by using 4Cz IPN as an assistant dopant in a hyperfluorescence(HF) configuration, where the 2DPACz BP HF device shows an EQEmaxof 20.0% at λEL of 605 nm and remains high at 11.8% at a luminance of 1,000 cd m-2, which makes this device one of the highest efficiency orange-to-red HF SP-OLEDs to date. 展开更多
关键词 thermally activated delayed fluorescence solution-processing red OLEDs dibenzo[a c]phenazine DENDRIMERS
原文传递
Recent Progress in All-Solution-Processed Organic Solar Cells
10
作者 Yixuan Xu Qian Wang +5 位作者 Wentao Zou Xu Zhang Yanna Sun Yuanyuan Kan Ping Cai Ke Gao 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第2期190-198,共9页
All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly effici... All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly efficient all-solution-processed OSCs remains a significant challenge.One of the key issues is the lack of high-quality solution-processed electrode systems that can replace indium tin oxide(ITO)and vacuum-deposited metal electrodes.In this paper,we comprehensively review recent advances in all-solution-processed osCs,and classified the devices as the top electrode materials,including silver nanowires(AgNWs),conducting polymers and composite conducting materials.The correlation between electrode materials,properties of electrodes,and device performance in all-solution-processed OSCs is elucidated.In addition,the critical roles of the active layer and interface layer are also discussed.Finally,the prospects and challenges of all-solution-processed OSCs are presented. 展开更多
关键词 Organic solar cells All-solution-processed organic solar cells solution-processed electrodes High performance Silver nanowires Conductive polymers Composite conducting materials
原文传递
Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides 被引量:3
11
作者 Qi Yan Liang Gao +1 位作者 Jiang Tang Huan Liu 《Journal of Semiconductors》 EI CAS CSCD 2019年第11期39-47,共9页
Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,b... Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,blood oxygen saturation,breath markers,etc.)and ambient signals(such as ultraviolet radiation,inflammable and explosive,toxic and harmful gases),thus providing new opportunities for human activity monitoring and personal telemedicine care.Here we focus on photodetectors and gas sensors built from metal chalcogenide,which have made great progress in recent years.Firstly,we present an overview of healthcare applications based on photodetectors and gas sensors,and discuss the requirement associated with these applications in detail.We then discuss advantages and properties of solution-processable metal chalcogenides,followed by some recent achievements in health monitoring with photodetectors and gas sensors based on metal chalcogenides.Last we present further research directions and challenges to develop an integrated wearable platform for monitoring human activity and personal healthcare. 展开更多
关键词 solution-processable metal CHALCOGENIDES gas sensor PHOTODETECTOR healthcare
下载PDF
Non-conjugated Polynorbornene Hosts with High Triplet Energy Levels for Solution-processed Narrowband Blue OLEDs 被引量:1
12
作者 LI Qiang CHEN Liang +3 位作者 WANG Xingdong WANG Shumeng SHAO Shiyang WANG Lixiang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第5期763-771,共9页
Three polymer hosts(namely PNB-tBuCz,PNB-Ac,PNB-TAc)containing non-conjugated polynorbornene(PNB)backbone and hole-transporting arylamine segments(carbazole,acridan and dendritic teracridan)in side chains are develope... Three polymer hosts(namely PNB-tBuCz,PNB-Ac,PNB-TAc)containing non-conjugated polynorbornene(PNB)backbone and hole-transporting arylamine segments(carbazole,acridan and dendritic teracridan)in side chains are developed for solution-processed narrowband blue organic light-emitting diodes(OLEDs).It is found that the non-conjugated polynorbornenes can keep high triplet energy(ET)levels in range of 3.12-3.20 eV by interrupting the conjugation of repeating units,making them capable as host materials for blue emitters.Meanwhile,by increasing the electron-donating capability of side chain arylamine from carbazole to acridan and dendritic teracridan,the highest occupied molecular orbital(HOMO)levels for the polymer hosts are elevated from-5.50 eV to-5.11 eV,beneficial for reducing the hole injection barrier from anode to emissive layer.As a result,solution-processed OLEDs employing polynorbornenes with dendritic teracridan side chain(PNB-TAc)as host and boron,selenium,nitrogen-containing multiple resonance thermally activated delayed fluorescence emitter as dopant reveal efficient narrowband blue electroluminescence with emission peak at 474 nm,full-width at half maximum of 30 nm,together with maximum external quantum efficiency of 20.2%,representing the state-of-the-art device efficiency for solution-processed OLEDs with narrowband blue emission. 展开更多
关键词 Polymer host POLYNORBORNENE Organic light-emitting diode solution-processed NARROWBAND Blue emission
原文传递
Phosphonium-Based Ionic Thermally Activated Delayed Fluorescence Emitters for High-Performance Partially Solution-Processed Organic Light-Emitting Diodes 被引量:2
13
作者 Xu-Lin Chen Xiao-Dong Tao +5 位作者 Ya-Shu Wang Zhuangzhuang Wei Lingyi Meng Dong-Hai Zhang Fu-Lin Lin Can-Zhong Lu 《CCS Chemistry》 CAS CSCD 2023年第3期589-597,共9页
Ionic thermally activated delayed fluorescence(TADF)emitters are rarely investigated due to their poor photoluminescence and electroluminescence performance.Herein,highly efficient ionic TADF emitters with charged do... Ionic thermally activated delayed fluorescence(TADF)emitters are rarely investigated due to their poor photoluminescence and electroluminescence performance.Herein,highly efficient ionic TADF emitters with charged donor–acceptor(D–A^(+))and D–A^(+)–D architectures are designed,innovatively based on the phosphonium cation electron acceptor.The symmetric D–A^(+)–D compound in doped film exhibits a high photoluminescence quantum yield of 0.91 and a short emission lifetime of 1.43 microseconds.Partially solution-processed organic lightemitting diodes based on these ionic TADF emitters achieve a maximum external quantum efficiency(EQE)of 18.3%and a peak luminance of 14,532 candelas per square meter(cd/m^(2))and show a small efficiency roll-off of 7.1%(EQE=17%)at a practical high luminance of 1000 cd/m^(2).These results demonstrate the high potential of phosphonium cations as promising electron acceptors to construct TADF emitters for high-performance electroluminescence devices.The current study opens up an appealing way for future exploitation of high-efficiency ionic TADF materials. 展开更多
关键词 cation acceptor charge transfer PHOSPHONIUM ionic emitter thermally activated delayed fluorescence partially solution-processed host-guest organic light-emitting diode efficiency roll-off
下载PDF
Constructing an efficient deep-blue TADF emitter by host-guest interactions towards solution-processed OLEDs with narrowband emission
14
作者 Yanchao Xie Lei Hua +5 位作者 Zhi Wang Yuerong Liu Shian Ying Yuchao Liu Zhongjie Ren Shouke Yan 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第3期826-836,共11页
High-efficiency thermally activated delayed fluorescence(TADF) emitters and corresponding well-designed solution-processed organic light emitting diodes(OLEDs) are presently attractive due to their potential for explo... High-efficiency thermally activated delayed fluorescence(TADF) emitters and corresponding well-designed solution-processed organic light emitting diodes(OLEDs) are presently attractive due to their potential for exploiting large-area flexible displays. In this context, we innovatively integrate 2,12-di-tert-butyl-5,9-dioxa-13b-boronaphtho [3,2,1] anthracene as the acceptor with 3,6-bis(3,6-di-tert-butylcarbazol-N-yl) carbazole as the donor to construct a rigid deep-blue emitter, TB-3t BuCz, which exhibits a narrow emission with full-width-at-half-maximum(FWHM) of 46 nm. TB-3t BuCz itself dispalys no TADF characteristics both in solution or in pure film states. However, the significant TADF behavior can be observed when TB-3t BuCz is doped with 2,6-DCzPPy host due to the formation of exciplex-like species in 2,6-DCzPPy/TB-3t BuCz system. It is also found that the discernible spin-flip of triplet excitons is feasible when the S1/T1states of the formed exciplex stay slightly lower than S1 and T1states of TB-3t BuCz for the other host/TB-3t BuCz systems. Eventually, thanks to the synergetic effect of rigid structure and favorable photophysical properties of TB-3t BuCz, the solution-processed OLEDs based on 2,6-DCzPPy/TB-3t BuCz as emitting layer has achieved the significantly improved external quantum efficiency(EQE) of 14.6% with suppressed efficiency roll-off.The CIE1931 coordinate of(0.158, 0.052) is typically in deep-blue region. Note that, this EQE value is among the highest echelon of solution-processed OLEDs with deep-blue emission by utilizing boron-containing TADF emitters. 展开更多
关键词 thermally activated delayed fluorescence oxygen-bridged cyclized boron host-guest interactions solution-processed OLEDs narrowband deep-blue emission
原文传递
Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells 被引量:5
15
作者 Zhi-Kai Yu Wei-Fei Fu +7 位作者 Wen-Qing Liu Zhong-Qiang Zhang Yu-Jing Liu Jie-Lin Yan Tao Ye Wei-Tao Yang Han-Ying Li Hong-Zheng Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第1期13-18,共6页
A solution-processed CuOx film has been successfully integrated as the hole-transporting layer(HTL) for inverted planar heterojunction perovskite solar cells(PVSCs). The CuOx layer is fabricated by simply spin-coa... A solution-processed CuOx film has been successfully integrated as the hole-transporting layer(HTL) for inverted planar heterojunction perovskite solar cells(PVSCs). The CuOx layer is fabricated by simply spin-coating a copper acetylacetonate(Cu(acac)2) chloroform solution onto ITO glass with high transparency in the visible range. The compact and pinhole-free perovskite film with large grain domains is grown on the CuOx film. The inverted PVSCs with the structure of ITO/CuOx/MAPbI3/PC(61)BM/ZnO/Al are fabricated and show a best PCE of 17.43% under standard AM 1.5G simulated solar irradiation with a VOCof 1.03 V, aJ(SC) of 22.42 mA cm^(-2), and a fill factor of 0.76, which is significantly higher and more stable than that fabricated from the often used hole-transporting material PEDOT:PSS(11.98%) under the same experimental conditions. The enhanced performance is attributed to the efficient hole extraction through the CuOx layer as well as the high-quality CH3NH3PbI3 films grown on the CuOx. Our results indicate that low-cost and solution-processed CuOx film is a promising HTL for high performance PVSCs with better stability. 展开更多
关键词 CuOx solution-processing Hole-transporting layer Perovskite solar cells Stable
原文传递
Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology 被引量:7
16
作者 Xiaojing Wan Ze Yu +6 位作者 Wenming Tian Fuzhi Huang Shengye Jin Xichuan Yang Yi-Bing Cheng Anders Hagfeldt Licheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期8-15,I0001,共9页
All-inorganic cesium lead bromide(CsPbBr3)perovskite is attracting growing interest as functional materials in photovoltaics and other optoelectronic devices due to its superb stability.However,the fabrication of high... All-inorganic cesium lead bromide(CsPbBr3)perovskite is attracting growing interest as functional materials in photovoltaics and other optoelectronic devices due to its superb stability.However,the fabrication of high-quality CsPbBr3 films still remains a big challenge by solution-process because of the low solubility of the cesium precursor in common solvents.Herein,we report a facile solution-processed approach to prepare high-quality CsPbBr3 perovskite films via a two-step spin-coating method,in which the Cs Br methanol/H2 O mixed solvent solution is spin-coated onto the lead bromide films,followed by an isopropanol-assisted post-treatment to regulate the crystallization process and to control the film morphology.In this fashion,dense and uniform CsPbBr3 films are obtained consisting of large crystalline domains with sizes up to microns and low defect density.The effectiveness of the resulting CsPbBr3 films is further examined in perovskite solar cells(PSCs)with a simplified planar architecture of fluorine–doped tin oxide/compact Ti O2/CsPbBr3/carbon,which deliver a maximum power conversion efficiency of 8.11%together with excellent thermal and humidity stability.The present work offers a simple and effective strategy in fabrication of high-quality CsPbBr3 films for efficient and stable PSCs as well as other optoelectronic devices. 展开更多
关键词 All-inorganic perovskite solar cells CsPbBr3 Morphology control solution-processed Stability
下载PDF
Solution-processed n-type Bi_2Te_(3-x)Se_x nanocomposites with enhanced thermoelectric performance via liquid-phase sintering 被引量:2
17
作者 Chaohua Zhang Chunxiao Zhang +1 位作者 Hongkuan Ng Qihua Xiong 《Science China Materials》 SCIE EI CSCD 2019年第3期389-398,共10页
The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Her... The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Here, a facile bottom-up solution-synthesis with spark plasma sintering(SPS) process has been developed to build n-type Bi2Te3-xSex bulk nanocomposites, which substantially improves the power factor and decreases the lattice thermal conductivity by tuning the interface scattering of phonons and electrons. The stoichiometric composition in ternary Bi2Te3-xSex nanocomposites is also tuned to optimize the carrier concentration and lattice thermal conductivity. The optimized bulk nanocomposite Bi2Te2.7Se0.3 exhibits a ZT of 1.1 at^371 K, which is comparable to the corresponding commercially available ingots. Our results demonstrate the great potential of the solution-processed n-type Bi2Te3-xSex nanocomposites for cost-effective thermoelectric applications. 展开更多
关键词 thermoelectric LIQUID-PHASE sintering NANOCOMPOSITES solution-processed bismuth TELLURIDE
原文传递
Solution‑Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency 被引量:5
18
作者 Juanyong Wan Yonggao Xia +8 位作者 Junfeng Fang Zhiguo Zhang Bingang Xu Jinzhao Wang Ling Ai Weijie Song Kwun Nam Hui Xi Fan Yongfang Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期39-52,共14页
Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through soluti... Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability. 展开更多
关键词 solution-processed transparent conducting electrode Flexible organic solar cell PEDOT:PSS Trifluoromethanesulfonic acid doping Solution processing
下载PDF
Solution-processed multi-resonance organic light-emitting diodes with high efficiency and narrowband emission 被引量:2
19
作者 Shen Xu Qingqing Yang +7 位作者 Ying Zhang Hui Li Qin Xue Guohua Xie Minzhao Gu Jibiao Jin Ling Huang Runfeng Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第4期1372-1376,共5页
With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emittin... With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emitting diodes(OLEDs)owing to their thermally activated delayed fluorescence(TADF)nature.However,the highly rigid molecular skeleton with the oppositely positioned bo ron and nitrogen in generating MR effects results in the intrinsic difficulties in the solution-processing of MR-OLEDs.Here,we demonstrate a facile strategy to increase the solubility,enhance the efficiencies and modulate emission color of MR-TADF molecules by extending aromatic rings and introducing tert-butyls into the MR backbone.Two MR-TADF emitters with smaller singlet-triplet splitting energies(ΔE~(ST))and larger oscillator strengths were prepared conveniently,and the solution-processed MR-OLEDs were fabricated for the first time,exhibiting efficient bluish-green electroluminescence with narrow FWHM of 32 nm and external quantum efficiency of 16.3%,which are even comparable to the state-of-the-art performances of the vacuum-evaporated devices.These results prove the feasibility of designing efficient solutionprocessible MR molecules,offering important clues in developing high-performance solution-processed MR-OLEDs with high efficiency and color purity. 展开更多
关键词 MULTI-RESONANCE Thermally activated delayed fluorescence solution-processed devices Charge-transfer delocalization Narrowband emission
原文传递
A solution-processed nanoscale COF-like material towards optoelectronic applications 被引量:2
20
作者 Qiang Fu Ting Wang +7 位作者 Yanna Sun Nan Zheng Zengqi Xie Di Lu Zhiyuan Xu Xiangjian Wan Yamin Zhang Yongsheng Liu 《Science China Chemistry》 SCIE EI CAS CSCD 2021年第1期82-91,共10页
Two-dimensional(2 D)covalent organic frameworks(COFs)with periodic functionalπ-electron systems are an emerging class of optoelectronic materials.However,almost all conjugated COFs so far are insoluble and hard to pr... Two-dimensional(2 D)covalent organic frameworks(COFs)with periodic functionalπ-electron systems are an emerging class of optoelectronic materials.However,almost all conjugated COFs so far are insoluble and hard to process,which hampers severely their optoelectronic applications.Here,a solution-processable,nanoscale and sp2 carbon-conjugated COF-like material,PDPP-C20 was successfully designed and synthesized.The solution-processed PDPP-C20 films exhibit high crystallinity and excellent charge transport properties along out-of-plane directions,combined with the highest occupied molecular orbital(HOMO)/lowest unoccupied molecular orbital(LUMO)levels of-5.36/-3.75 e V,making PDPP-C20 suitable for electronic device applications.An efficiency as high as 21.92%has been demonstrated when it was used as a functional interfacial layer in perovskite solar cells,coupled with dramatically improved stability in comparison with the control device due to the superior hydrophobicity of PDPP-C20 layer as well as its passivation effect on perovskite surface.Furthermore,the soluble PDPP-C20 could also be used as donor in bulk-heterojunction organic solar cells and an initial efficiency of 2.46%has been achieved.These results indicate that this new class of soluble and nanoscale COF-like materials should offer a new arena of functional materials for optoelectronic devices. 展开更多
关键词 solution-processable covalent organic frameworks perovskite solar cells mobility PASSIVATION
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部