期刊文献+
共找到28,780篇文章
< 1 2 250 >
每页显示 20 50 100
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane
1
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection Large-scale model test
原文传递
Resistance of full-scale beams against close-in explosions.Numerical modeling and field tests
2
作者 A.Prado A.Alañón +5 位作者 R.Castedo A.P.Santos L.M.López M.Chiquito M.Bermejo C.Oggeri 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期35-47,共13页
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ... This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed. 展开更多
关键词 Blast test Numerical simulation LS-DYNA Concrete model Mesh effect Full-scale beams
下载PDF
Dynamic response of mountain tunnel,bridge,and embankment along the Sichuan-Tibet transportation corridor to active fault based on model tests
3
作者 HUANG Beixiu QIAO Sijia +2 位作者 CHEN Xulei LI Lihui QI Shengwen 《Journal of Mountain Science》 SCIE CSCD 2024年第1期182-199,共18页
The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on dif... The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor. 展开更多
关键词 Dynamic response Engineering structure Sichuan-Tibet transportation corridor Active fault EARTHQUAKE model test
原文传递
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
4
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 Explosive load Explosion resistance performance model test POLYUREA Concrete box girder Numerical simulation
下载PDF
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test
5
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability Physical model test Surface 3D deformation Stability identification
原文传递
Determination of Material Parameters of EVA Foam under Uniaxial Compressive Testing Using Hyperelastic Models
6
作者 Nattapong Sangkapong Fasai Wiwatwongwana Nattawit Promma 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期800-804,共5页
The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of ... The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application. 展开更多
关键词 hyperelastic models modulus of rigidity EVA foam curve fitting method strain energy function uniaxial compressive testing
原文传递
Physical model test and application of 3D printing rock-like specimens to laminated rock tunnels
7
作者 Yun Tian Weizhong Chen +3 位作者 Hongming Tian Xiaoyun Shu Linkai He Man Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4625-4637,共13页
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t... Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks. 展开更多
关键词 Bedding plane Three-dimensional(3D)printing Physical model test Non-uniform deformation Digital imaging correlation(DIC)
下载PDF
Novel Hybrid X GBoost Model to Forecast Soil Shear Strength Based on Some Soil Index Tests 被引量:1
8
作者 Ehsan Momeni Biao He +1 位作者 Yasin Abdi Danial Jahed Armaghani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2527-2550,共24页
When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a nove... When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a novel predictive model of shear strength.The study implements an extreme gradient boosting(XGBoost)technique coupled with a powerful optimization algorithm,the salp swarm algorithm(SSA),to predict the shear strength of various soils.To do this,a database consisting of 152 sets of data is prepared where the shear strength(τ)of the soil is considered as the model output and some soil index tests(e.g.,dry unit weight,water content,and plasticity index)are set as model inputs.Themodel is designed and tuned using both effective parameters of XGBoost and SSA,and themost accuratemodel is introduced in this study.Thepredictionperformanceof theSSA-XGBoostmodel is assessedbased on the coefficient of determination(R2)and variance account for(VAF).Overall,the obtained values of R^(2) and VAF(0.977 and 0.849)and(97.714%and 84.936%)for training and testing sets,respectively,confirm the workability of the developed model in forecasting the soil shear strength.To investigate the model generalization,the prediction performance of the model is tested for another 30 sets of data(validation data).The validation results(e.g.,R^(2) of 0.805)suggest the workability of the proposed model.Overall,findings suggest that when the shear strength of the soil cannot be determined directly,the proposed hybrid XGBoost-SSA model can be utilized to assess this parameter. 展开更多
关键词 Predictive model salp swarm algorithm soil index tests soil shear strength XGBoost
下载PDF
Comparative Analysis of Machine Learning Models for PDF Malware Detection:Evaluating Different Training and Testing Criteria 被引量:2
9
作者 Bilal Khan Muhammad Arshad Sarwar Shah Khan 《Journal of Cyber Security》 2023年第1期1-11,共11页
The proliferation of maliciously coded documents as file transfers increase has led to a rise in sophisticated attacks.Portable Document Format(PDF)files have emerged as a major attack vector for malware due to their ... The proliferation of maliciously coded documents as file transfers increase has led to a rise in sophisticated attacks.Portable Document Format(PDF)files have emerged as a major attack vector for malware due to their adaptability and wide usage.Detecting malware in PDF files is challenging due to its ability to include various harmful elements such as embedded scripts,exploits,and malicious URLs.This paper presents a comparative analysis of machine learning(ML)techniques,including Naive Bayes(NB),K-Nearest Neighbor(KNN),Average One Dependency Estimator(A1DE),RandomForest(RF),and SupportVectorMachine(SVM)forPDFmalware detection.The study utilizes a dataset obtained from the Canadian Institute for Cyber-security and employs different testing criteria,namely percentage splitting and 10-fold cross-validation.The performance of the techniques is evaluated using F1-score,precision,recall,and accuracy measures.The results indicate that KNNoutperforms other models,achieving an accuracy of 99.8599%using 10-fold cross-validation.The findings highlight the effectiveness of ML models in accurately detecting PDF malware and provide insights for developing robust systems to protect against malicious activities. 展开更多
关键词 Cyber-security PDF malware model training testing
下载PDF
Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths 被引量:3
10
作者 Zhi Zheng Hongyu Xu +3 位作者 Kai Zhang Guangliang Feng Qiang Zhang Yufei Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期117-136,共20页
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona... Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads. 展开更多
关键词 True triaxial static and disturbance test Mechanical properties Failure mechanism and precursor Intermittent disturbance effect Fractional mechanical model
下载PDF
A Parallel Hybrid Testing Technique for Tri-Programming Model-Based Software Systems
11
作者 Huda Basloom Mohamed Dahab +3 位作者 Abdullah Saad AL-Ghamdi Fathy Eassa Ahmed Mohammed Alghamdi Seif Haridi 《Computers, Materials & Continua》 SCIE EI 2023年第2期4501-4530,共30页
Recently,researchers have shown increasing interest in combining more than one programming model into systems running on high performance computing systems(HPCs)to achieve exascale by applying parallelism at multiple ... Recently,researchers have shown increasing interest in combining more than one programming model into systems running on high performance computing systems(HPCs)to achieve exascale by applying parallelism at multiple levels.Combining different programming paradigms,such as Message Passing Interface(MPI),Open Multiple Processing(OpenMP),and Open Accelerators(OpenACC),can increase computation speed and improve performance.During the integration of multiple models,the probability of runtime errors increases,making their detection difficult,especially in the absence of testing techniques that can detect these errors.Numerous studies have been conducted to identify these errors,but no technique exists for detecting errors in three-level programming models.Despite the increasing research that integrates the three programming models,MPI,OpenMP,and OpenACC,a testing technology to detect runtime errors,such as deadlocks and race conditions,which can arise from this integration has not been developed.Therefore,this paper begins with a definition and explanation of runtime errors that result fromintegrating the three programming models that compilers cannot detect.For the first time,this paper presents a classification of operational errors that can result from the integration of the three models.This paper also proposes a parallel hybrid testing technique for detecting runtime errors in systems built in the C++programming language that uses the triple programming models MPI,OpenMP,and OpenACC.This hybrid technology combines static technology and dynamic technology,given that some errors can be detected using static techniques,whereas others can be detected using dynamic technology.The hybrid technique can detect more errors because it combines two distinct technologies.The proposed static technology detects a wide range of error types in less time,whereas a portion of the potential errors that may or may not occur depending on the 4502 CMC,2023,vol.74,no.2 operating environment are left to the dynamic technology,which completes the validation. 展开更多
关键词 Software testing hybrid testing technique OpenACC OPENMP MPI tri-programming model exascale computing
下载PDF
Damage constitutive model of lunar soil simulant geopolymer under impact loading 被引量:2
12
作者 Hanyan Wang Qinyong Ma Qianyun Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1059-1071,共13页
Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properti... Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properties of lunar soil by establishing a constitutive relationship is critical for providing a theoretical basis for its damage evolution.In this paper,a split Hopkinson pressure bar(SHPB)device was used to perform three sets of impact tests under different pressures on a lunar soil simulant geopolymer(LSSG)with sodium silicate(Na_(2)SiO_(3))contents of 1%,3%,5%and 7%.The dynamic stressestrain curves,failure modes,and energy variation rules of LSSG under different pressures were obtained.The equation was modified based on the ZWT viscoelastic constitutive model and was combined with the damage variable.The damage element obeys the Weibull distribution and the constitutive equation that can describe the mechanical properties of LSSG under dynamic loading was obtained.The results demonstrate that the dynamic compressive strength of LSSG has a marked strain-rate strengthening effect.Na_(2)SiO_(3) has both strengthening and deterioration effects on the dynamic compressive strength of LSSG.As Na_(2)SiO_(3) grows,the dynamic compressive strength of LSSG first increases and then decreases.At a fixed air pressure,5%Na_(2)SiO_(3) had the largest dynamic compressive strength,the largest incident energy,the smallest absorbed energy,and the lightest damage.The ZWT equation was modified according to the stress response properties of LSSG and the range of the SHPB strain rate to obtain the constitutive equation of the LSSG,and the model’s correctness was confirmed. 展开更多
关键词 Lunar soil simulant geopolymer(LSSG) Split hopkinson pressure bar(SHPB)test Constitutive model Energy analysis Failure mode
下载PDF
Stiffness Degradation Modeling for Composite Wind Turbine Blades Based on Full-Scale Fatigue Testing
13
作者 Haixia Kou Kongyuan Wei +1 位作者 Yanhu Liu Xuyao Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期517-528,共12页
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin... In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading. 展开更多
关键词 composite wind turbine blades fatigue damage stiffness degradation model full-scale fatigue testing
下载PDF
Establishment of Unstable Flow Model and Well Testing Analysis for Viscoelastic Polymer Flooding
14
作者 Zheng Lv Meinan Wang 《World Journal of Engineering and Technology》 2023年第2期273-280,共8页
At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments... At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments have shown that polymer solutions have viscoelasticity, and disregarding the elasticity will cause certain errors in the analysis of polymer solution seepage law. Based on the percolation theory, this paper describes the polymer flooding mechanism from the two aspects of viscous effect and elastic effect, the mathematical model of oil water two-phase three components unsteady flow in viscoelastic polymer flooding was established, and solved by finite difference method, and the well-test curve was drawn to analyze the rule of well test curve in polymer flooding. The results show that, the degree of upward warping in the radial flow section of the pressure recovery curve when considering polymer elasticity is greater than the curve which not considering polymer elasticity. The relaxation time, power-law index, polymer injection concentration mainly affect the radial flow stage of the well testing curve. The relaxation time, power-law index, polymer injection concentration and other polymer flooding parameters mainly affect the radial flow stage of the well testing curve. The larger the polymer flooding parameters, the greater the degree of upwarping of the radial flow derivative curve. This model has important reference significance for well-testing research in polymer flooding oilfields. 展开更多
关键词 Polymer Flooding VISCOELASTICITY Well testing Mathematical model Seepage Law
下载PDF
Model test of negative Poisson’s ratio cable for supporting super-largespan tunnel using excavation compensation method
15
作者 Manchao He Aipeng Guo +4 位作者 Zhifeng Du Songyuan Liu Chun Zhu Shiding Cao Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1355-1369,共15页
In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.... In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。 展开更多
关键词 Super-large-span tunnel Excavation compensation method(ECM) NPR(Negative Poisson’s ratio)anchor cable model test
下载PDF
Stereoscopic Camera-Sensor Model for the Development of Highly Automated Driving Functions within a Virtual Test Environment
16
作者 René Degen Martin de Fries +3 位作者 Alexander Nüßgen Marcus Irmer Mats Leijon Margot Ruschitzka 《Journal of Transportation Technologies》 2023年第1期87-114,共28页
The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments... The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions. 展开更多
关键词 Sensor model Virtual test Environment Stereoscopic Camera Unreal Engine OPENCV ADAS/AD
下载PDF
Research on the intelligent internet nursing model based on the child respiratory and asthma control test scale for asthma management of preschool children
17
作者 Chuan-Feng Pei Li Zhang +2 位作者 Xi-Yan Xu Zhen Qin Hong-Mei Liang 《World Journal of Clinical Cases》 SCIE 2023年第28期6707-6714,共8页
BACKGROUND Childhood asthma is a common respiratory ailment that significantly affects preschool children.Effective asthma management in this population is particularly challenging due to limited communication skills ... BACKGROUND Childhood asthma is a common respiratory ailment that significantly affects preschool children.Effective asthma management in this population is particularly challenging due to limited communication skills in children and the necessity for consistent involvement of a caregiver.With the rise of digital healthcare and the need for innovative interventions,Internet-based models can potentially offer relatively more efficient and patient-tailored care,especially in children.AIM To explore the impact of an intelligent Internet care model based on the child respiratory and asthma control test(TRACK)on asthma management in preschool children.METHODS The study group comprised preschoolers,aged 5 years or younger,that visited the hospital's pediatric outpatient and emergency departments between January 2021 and January 2022.Total of 200 children were evenly and randomly divided into the observation and control groups.The control group received standard treatment in accordance with the 2016 Guidelines for Pediatric Bronchial Asthma and the Global Initiative on Asthma.In addition to above treatment,the observation group was introduced to an intelligent internet nursing model,emphasizing the TRACK scale.Key measures monitored over a six-month period included the frequency of asthma attack,emergency visits,pulmonary function parameters(FEV1,FEV1/FVC,and PEF),monthly TRACK scores,and the SF-12 quality of life assessment.Post-intervention asthma control rates were assessed at six-month follow-up.RESULTS The observation group had fewer asthma attacks and emergency room visits than the control group(P<0.05).After six months of treatment,the children in both groups had higher FEV1,FEV1/FVC,and PEF(P<0.05).Statistically significant differences were observed between the two groups(P<0.05).For six months,children in the observation group had a higher monthly TRACK score than those in the control group(P<0.05).The PCS and MCSSF-12 quality of life scores were relatively higher than those before the nursing period(P<0.05).Furthermore,the groups showed statistically significant differences(P<0.05).The asthma control rate was higher in the observation group than in the control group(P<0.05).CONCLUSION TRACK based Intelligent Internet nursing model may reduce asthma attacks and emergency visits in asthmatic children,improve lung function,quality of life,and the TRACK score and asthma control rate.The effect of nursing was significant,allowing for development of an asthma management model. 展开更多
关键词 Child respiratory and asthma control test scale Intelligent internet nursing model PRESCHOOLERS Childhood asthma Administration Healthcare
下载PDF
Theoretical investigation on axial cyclic performance of monopile in sands using interface constitutive models
18
作者 Pan Zhou Jingpei Li +2 位作者 Kaoshan Dai Stefan Vogt Seyedmohsen Miraei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2645-2662,共18页
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c... Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses. 展开更多
关键词 PILES Cyclic degradation Load-transfer models Interface constitutive model Semi-analytical solution model tests
下载PDF
Analytical evaluation of steady-state solute distribution in through- diffusion and membrane behavior test under non-perfectly flushing boundary conditions
19
作者 Guannian Chen Yuchao Li +1 位作者 Kristin MSample-Lord Shan Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期258-267,共10页
The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-... The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-based barrier materials.However,the common assumption of perfectly flushing conditions at the specimen boundaries could induce errors in analyses of the diffusion coefficients and membrane efficiencies.In this study,an innovative pseudo three-dimensional(3D)analytical method was proposed to evaluate solute distribution along the boundary surfaces of the soil-porous disks system,considering the non-perfectly flushing conditions.The results were consistent with numerical models under two scenarios considering different inflow/outflow positions.The proposed model has been demonstrated to be an accurate and reliable method to estimate solute distributions along the bound-aries.The calculated membrane efficiency coefficient and diffusion coefficient based on the proposed analytical method are more accurate,resulting in up to 50%less relative error than the traditional approach that adopts the arithmetic mean value of the influent and effluent concentrations.The retar-dation factor of the clay specimen also can be calculated with a revised cumulative mass approach.Finally,the simulated transient solute transport matched with experimental data from a multi-stage through-diffusion and membrane behavior test,validating the accuracy of the proposed method. 展开更多
关键词 Diffusion testing Membrane behavior Coupled transport Clay barrier Transport modeling
下载PDF
A statistical damage-based constitutive model for shearing of rock joints in brittle drop mode
20
作者 Xinrong Liu Peiyao Li +5 位作者 Xueyan Guo Xinyang Luo Xiaohan Zhou Luli Miao Fuchuan Zhou Hao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1041-1058,共18页
Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encum... Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations. 展开更多
关键词 Rock joints Brittle rock Direct shear test Damage-based constitutive model Parameters analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部