This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables....This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. The slope function is estimated by the functional principal component basis. The asymptotic distribution of the estimator of the vector of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. It is showed that this rate is optirnal in a minimax sense under some smoothness assumptions on the covariance kernel of the covariate and the slope function. The convergence rate of the mean squared prediction error for the proposed estimators is also established. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about Berkeley growth data is used to illustrate our proposed methodology.展开更多
This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile ...This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11071120)
文摘This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. The slope function is estimated by the functional principal component basis. The asymptotic distribution of the estimator of the vector of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. It is showed that this rate is optirnal in a minimax sense under some smoothness assumptions on the covariance kernel of the covariate and the slope function. The convergence rate of the mean squared prediction error for the proposed estimators is also established. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about Berkeley growth data is used to illustrate our proposed methodology.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401048, 11301037, 11571051 and 11201174)the Natural Science Foundation for Young Scientists of Jilin Province of China (Grant Nos. 20150520055JH and 20150520054JH)
文摘This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application.