In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element...In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element method (FEM) this paper analyzed problems in the shrinkage of functionally graded material interface of shield concrete segment, which was designed and produced by the principle of functionally graded materials. In the analysis model, the total shrinkage of concrete was converted into the thermal shrinkage by means of the method of 'Equivalent Temperature Difference'. Consequently, the shrinkage stress of interface layer was calculated and compared with the bond strength of interface layer. The results indicated that the volume deformation of two-phase materials of functionally graded concrete (FGC) segment, which were the concrete cover and the concrete structure layer, showed better compatibility and the tension stress of interface layer, which was resulted from the shrinkage of concrete and calculated by ANSYS, was less than the bond strength of interface layer. Therefore, the interface stability of functionally graded concrete segment was good and the sliding deformation of interface layer would not generate.展开更多
The quality of segment is very important to the service life of shield tunnel.Concerning the complex engineering environment of the Wuhan Yangtze River Shield Tunnel,the principle of functionally graded materials was ...The quality of segment is very important to the service life of shield tunnel.Concerning the complex engineering environment of the Wuhan Yangtze River Shield Tunnel,the principle of functionally graded materials was introduced to design and produce the functionally graded concrete segment(FGCS).Its key manufacturing technique was proposed and its performance was tested.展开更多
文摘In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element method (FEM) this paper analyzed problems in the shrinkage of functionally graded material interface of shield concrete segment, which was designed and produced by the principle of functionally graded materials. In the analysis model, the total shrinkage of concrete was converted into the thermal shrinkage by means of the method of 'Equivalent Temperature Difference'. Consequently, the shrinkage stress of interface layer was calculated and compared with the bond strength of interface layer. The results indicated that the volume deformation of two-phase materials of functionally graded concrete (FGC) segment, which were the concrete cover and the concrete structure layer, showed better compatibility and the tension stress of interface layer, which was resulted from the shrinkage of concrete and calculated by ANSYS, was less than the bond strength of interface layer. Therefore, the interface stability of functionally graded concrete segment was good and the sliding deformation of interface layer would not generate.
文摘The quality of segment is very important to the service life of shield tunnel.Concerning the complex engineering environment of the Wuhan Yangtze River Shield Tunnel,the principle of functionally graded materials was introduced to design and produce the functionally graded concrete segment(FGCS).Its key manufacturing technique was proposed and its performance was tested.