期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
From cortex to cord: motor circuit plasticity after spinal cord injury 被引量:8
1
作者 Andrew R. Brown Marina Martinez 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第12期2054-2062,共9页
Spinal cord injury is associated with chronic sensorimotor deficits due to the interruption of ascending and descending tracts between the brain and spinal cord. Functional recovery after anatomically complete spinal ... Spinal cord injury is associated with chronic sensorimotor deficits due to the interruption of ascending and descending tracts between the brain and spinal cord. Functional recovery after anatomically complete spinal cord injury is limited due to the lack of long-distance axonal regeneration of severed fibers in the adult central nervous system. Most spinal cord injuries in humans, however, are anatomically incomplete. Although restorative treatment options for spinal cord injury remain currently limited, research from experimental models of spinal cord injury have revealed a tremendous capability for both spontaneous and treatment-induced plasticity of the corticospinal system that supports functional recovery. We review recent advances in the understanding of corticospinal circuit plasticity after spinal cord injury and concentrate mainly on the hindlimb motor cortex, its corticospinal projections, and the role of spinal mechanisms that support locomotor recovery. First, we discuss plasticity that occurs at the level of motor cortex and the reorganization of cortical movement representations. Next, we explore downstream plasticity in corticospinal projections. We then review the role of spinal mechanisms in locomotor recovery. We conclude with a perspective on harnessing neuroplasticity with therapeutic interventions to promote functional recovery. 展开更多
关键词 spinal cord injury motor cortex motor map corticospinal tract NEUROPLASTICITY functionalrecovery animal models FORELIMB HINDLIMB locomotion
下载PDF
Recombinant human fibroblast growth factor-2 promotes nerve regeneration and functional recovery after mental nerve crush injury 被引量:2
2
作者 Sung Ho Lee Wei-Peng Jin +4 位作者 Na Ri Seo Kang-Mi Pang Bongju Kim Soung-Min Kim Jong-Ho Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第4期629-636,共8页
Several studies have shown that fibroblast growth factor-2 (FGF2) can directly affect axon regeneration after peripheral nerve damage. In this study, we performed sensory tests and histological analyses to study the... Several studies have shown that fibroblast growth factor-2 (FGF2) can directly affect axon regeneration after peripheral nerve damage. In this study, we performed sensory tests and histological analyses to study the effect of recombinant human FGF-2 (rhFGF2) treatment on damaged mental nerves. The mental nerves of 6-week-old male Sprague-Dawley rats were crush-injured for 1 minute and then treated with 10 or 50 μg/mL rhFGF2 or PBS in crush injury area with a mini Osmotic pump. Sensory test using von Frey filaments at 1 week revealed the presence of sensory degeneration based on decreased gap score and increased difference score. However, at 2 weeks, the gap score and difference score were significantly rebounded in the mental nerve crush group treated with 10 μg/mL rhFGF2. Interestingly, treatment with 10 μg/mL rhFGF had a more obviously positive effect on the gap score than treatment with 50 μg/mL rhFGF2. In addition, retrograde neuronal tracing with Dil revealed a significant increase in nerve regeneration in the trigeminal ganglion at 2 and 4 weeks in the rhFGF2 groups (10 μg/mL and 50 μg/mL) than in the PBS group. The 10 μg/mL rhFGF2 group also showed an obviously robust regeneration in axon density in the mental nerve at 4 weeks. Our results demonstrate that 10 μg/mL rhFGF induces mental nerve regeneration and sensory recovery after mental nerve crush injury. 展开更多
关键词 nerve regeneration mental nerve fibroblast growth factor crush injury sensory neuron functionalrecovery neural regeneration
下载PDF
Biomaterials for spinal cord repair 被引量:10
3
作者 Agnes E. Haggerty Martin oudega 《Neuroscience Bulletin》 SCIE CAS CSCD 2013年第4期445-459,共15页
Spinal cord injury (SCI) results in permanent loss of function leading to often devastating personal, economic and social problems. A contributing factor to the permanence of SCI is that damaged axons do not regener... Spinal cord injury (SCI) results in permanent loss of function leading to often devastating personal, economic and social problems. A contributing factor to the permanence of SCI is that damaged axons do not regenerate, which prevents the re-establishment of axonal circuits involved in function. Many groups are working to develop treatments that address the lack of axon regeneration after SCI. The emergence of biomaterials for regeneration and increased collaboration between engineers, basic and translational scientists, and clinicians hold promise for the development of effective therapies for SCI. A plethora of biomaterials is available and has been tested in various models of SCI. Considering the clinical relevance of contusion injuries, we primarily focus on polymers that meet the specific criteria for addressing this type of injury. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Designing materials to address the specific needs of the damaged central nervous system is crucial and possible with current technology. Here, we review the most prominent materials, their optimal characteristics, and their potential roles in repairing and regenerating damaged axons following SCI. 展开更多
关键词 spinal cord injury axon regeneration biodegradable materials extracellular matrix proteins functionalrecovery growth factor guidance injury and repair spinal motor neuron
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部