BACKGROUND: The role of the left midfusiform gyrus as a target for visual word processing has been a topic of discussion. Numerous studies have utilized alphabetic writing for subject matter. However, few have addres...BACKGROUND: The role of the left midfusiform gyrus as a target for visual word processing has been a topic of discussion. Numerous studies have utilized alphabetic writing for subject matter. However, few have addressed visual processing of Chinese characters in the left midfusiform gyrus. OBJECTIVE: To verify visual processing of Chinese characters and images in the left midfusiform gyrus using functional magnetic resonance imaging. DESIGN, TIME AND SETTING: A blocked design paradigm study. Experiments were performed at the Room of Magnetic Resonance, Guangdong Provincial Second People's Hospital, China from May to June 2009. PARTICIPANTS: A total of eight undergraduate students were recruited from Guangzhou University of China, comprising two females and six males, aged 20-23 years. The subjects were right-handed which was determined by a Chinese standard questionnaire. None of the subjects had a history of psychoneurosis, familial disease, color blindness, or color weakness. METHODS: A total of eight undergraduates were enrolled as subjects. Picture-naming and verb generation tasks were employed through the use of functional magnetic resonance imaging. Analysis of Functional Neurolmages software was used to process the data. MAIN OUTCOME MEASURES: Visual processing of Chinese characters and images in the left midfusiform gyrus was measured. RESULTS: Picture-naming and verb generation tasks were shown to significantly activate the bilateral midfusiform gyrus. Activation occurred in the visual word form area of the left midfusiform gyrus. CONCLUSION: The left midfusiform gyrus plays a general role in visual processing of Chinese characters and images.展开更多
OBJECTIVE: The objective of this study is to summarize and analyze the brain signal patterns of empathy for pain caused by facial expressions of pain utilizing activation likelihood estimation, a meta-analysis method....OBJECTIVE: The objective of this study is to summarize and analyze the brain signal patterns of empathy for pain caused by facial expressions of pain utilizing activation likelihood estimation, a meta-analysis method. DATA SOURCES: Studies concerning the brain mechanism were searched from the Science Citation Index, Science Direct, PubMed, DeepDyve, Cochrane Library, SinoMed, Wanfang, VIP, China National Knowledge Infrastructure, and other databases, such as SpringerLink, AMA, Science Online, Wiley Online, were collected. A time limitation of up to 13 December 2016 was applied to this study. DATA SELECTION: Studies presenting with all of the following criteria were considered for study inclusion: Use of functional magnetic resonance imaging, neutral and pained facial expression stimuli, involvement of adult healthy human participants over 18 years of age, whose empathy ability showed no difference from the healthy adult, a painless basic state, results presented in Talairach or Montreal Neurological Institute coordinates, multiple studies by the same team as long as they used different raw data. OUTCOME MEASURES: Activation likelihood estimation was used to calculate the combined main activated brain regions under the stimulation of pained facial expression. RESULTS: Eight studies were included, containing 178 subjects. Meta-analysis results suggested that the anterior cingulate cortex(BA32), anterior central gyrus(BA44), fusiform gyrus, and insula(BA13) were activated positively as major brain areas under the stimulation of pained facial expression. CONCLUSION: Our study shows that pained facial expression alone, without viewing of painful stimuli, activated brain regions related to pain empathy, further contributing to revealing the brain's mechanisms of pain empathy.展开更多
When the brain is subjected to excessive physical forces,including blunt impact,high-speed rotation,or blast overpressure waves,its tissue structure and function can be compromised,leading to traumatic brain injury(...When the brain is subjected to excessive physical forces,including blunt impact,high-speed rotation,or blast overpressure waves,its tissue structure and function can be compromised,leading to traumatic brain injury(TBI).展开更多
基金the Key Programming Research Project of Education Science During the 11~(th) Five-Year Plan Period of Guangdong Province, No. 06TJZ014the Programming Project of Education Science During the 11~(th) Five-Year Plan Period of Guangzhou City, No. 07B290
文摘BACKGROUND: The role of the left midfusiform gyrus as a target for visual word processing has been a topic of discussion. Numerous studies have utilized alphabetic writing for subject matter. However, few have addressed visual processing of Chinese characters in the left midfusiform gyrus. OBJECTIVE: To verify visual processing of Chinese characters and images in the left midfusiform gyrus using functional magnetic resonance imaging. DESIGN, TIME AND SETTING: A blocked design paradigm study. Experiments were performed at the Room of Magnetic Resonance, Guangdong Provincial Second People's Hospital, China from May to June 2009. PARTICIPANTS: A total of eight undergraduate students were recruited from Guangzhou University of China, comprising two females and six males, aged 20-23 years. The subjects were right-handed which was determined by a Chinese standard questionnaire. None of the subjects had a history of psychoneurosis, familial disease, color blindness, or color weakness. METHODS: A total of eight undergraduates were enrolled as subjects. Picture-naming and verb generation tasks were employed through the use of functional magnetic resonance imaging. Analysis of Functional Neurolmages software was used to process the data. MAIN OUTCOME MEASURES: Visual processing of Chinese characters and images in the left midfusiform gyrus was measured. RESULTS: Picture-naming and verb generation tasks were shown to significantly activate the bilateral midfusiform gyrus. Activation occurred in the visual word form area of the left midfusiform gyrus. CONCLUSION: The left midfusiform gyrus plays a general role in visual processing of Chinese characters and images.
基金supported by the National Natural Science Foundation of China,No.81473769(to WW),81772430(to WW)a grant from the Training Program of Innovation and Entrepreneurship for Undergraduates of Southern Medical University of Guangdong Province of China in 2016,No.201612121057(to WW)
文摘OBJECTIVE: The objective of this study is to summarize and analyze the brain signal patterns of empathy for pain caused by facial expressions of pain utilizing activation likelihood estimation, a meta-analysis method. DATA SOURCES: Studies concerning the brain mechanism were searched from the Science Citation Index, Science Direct, PubMed, DeepDyve, Cochrane Library, SinoMed, Wanfang, VIP, China National Knowledge Infrastructure, and other databases, such as SpringerLink, AMA, Science Online, Wiley Online, were collected. A time limitation of up to 13 December 2016 was applied to this study. DATA SELECTION: Studies presenting with all of the following criteria were considered for study inclusion: Use of functional magnetic resonance imaging, neutral and pained facial expression stimuli, involvement of adult healthy human participants over 18 years of age, whose empathy ability showed no difference from the healthy adult, a painless basic state, results presented in Talairach or Montreal Neurological Institute coordinates, multiple studies by the same team as long as they used different raw data. OUTCOME MEASURES: Activation likelihood estimation was used to calculate the combined main activated brain regions under the stimulation of pained facial expression. RESULTS: Eight studies were included, containing 178 subjects. Meta-analysis results suggested that the anterior cingulate cortex(BA32), anterior central gyrus(BA44), fusiform gyrus, and insula(BA13) were activated positively as major brain areas under the stimulation of pained facial expression. CONCLUSION: Our study shows that pained facial expression alone, without viewing of painful stimuli, activated brain regions related to pain empathy, further contributing to revealing the brain's mechanisms of pain empathy.
基金supported by a USAMRAA grant to WDSK(W81XWH-12-1-0386)
文摘When the brain is subjected to excessive physical forces,including blunt impact,high-speed rotation,or blast overpressure waves,its tissue structure and function can be compromised,leading to traumatic brain injury(TBI).