Medical care has undergone remarkable improvements over the past few decades.One of the most important innovative breakthroughs in modern medicine is the advent of minimally and less invasive treatments.The trend towa...Medical care has undergone remarkable improvements over the past few decades.One of the most important innovative breakthroughs in modern medicine is the advent of minimally and less invasive treatments.The trend towards employing less invasive treatment has been vividly shown in the field of gastroenterology,particularly coloproctology.Parallel to foregut interventions,colorectal surgery has shifted towards a minimally invasive approach.Coloproctology,including both medical and surgical management of colorectal diseases,has undergone a remarkable paradigm shift.The treatment of both benign and malignant colorectal conditions has gradually transitioned towards more conservative and less inva-sive approaches.An interesting paradigm shift was the trend to avoid the need for radical resection of rectal cancer altogether in patients who showed complete response to neoadjuvant treatment.The trend of adopting less invasive appro-aches to treat various colorectal conditions does not seem to be stopping soon as further research on novel,more effective and safer methods is ongoing.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
Earthquakes triggered by dynamic disturbances have been confirmed by numerous observations and experiments.In the past several decades,earthquake triggering has attracted increasing attention of scholars in relation t...Earthquakes triggered by dynamic disturbances have been confirmed by numerous observations and experiments.In the past several decades,earthquake triggering has attracted increasing attention of scholars in relation to exploring the mechanism of earthquake triggering,earthquake prediction,and the desire to use the mechanism of earthquake triggering to reduce,prevent,or trigger earthquakes.Natural earthquakes and large‐scale explosions are the most common sources of dynamic disturbances that trigger earthquakes.In the past several decades,some models have been developed,including static,dynamic,quasi‐static,and other models.Some reviews have been published,but explosiontriggered seismicity was not included.In recent years,some new results on earthquake triggering have emerged.Therefore,this paper presents a new review to reflect the new results and include the content of explosion‐triggered earthquakes for the reference of scholars in this area.Instead of a complete review of the relevant literature,this paper primarily focuses on the main aspects of dynamic earthquake triggering on a tectonic scale and makes some suggestions on issues that need to be resolved in this area in the future.展开更多
The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR varia...The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR variations over the Tibetan Plateau. It assesses 23 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6) using CN05.1 observational data as validation, evaluating their ability to simulate DTR over the Tibetan Plateau. Then, the evolution of DTR over the Tibetan Plateau under different shared socioeconomic pathway(SSP) scenarios for the near,middle, and long term of future projection are analyzed using 11 selected robustly performing models. Key findings reveal:(1) Among the models examined, BCC-CSM2-MR, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR,FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and INM-CM5-0 exhibit superior integrated simulation capability for capturing the spatiotemporal variability of DTR over the Tibetan Plateau.(2) Projection indicates a slightly increasing trend in DTR on the Tibetan Plateau in the SSP1-2.6 scenario, and decreasing trends in the SSP2-4.5, SSP3-7.0, and SPP5-8.5 scenarios. In certain areas, such as the southeastern edge of the Tibetan Plateau, western hinterland of the Tibetan Plateau, southern Kunlun, and the Qaidam basins, the changes in DTR are relatively large.(3) Notably, the warming rate of maximum temperature under SSP2-4.5, SSP3-7.0, and SPP5-8.5 is slower compared to that of minimum temperature, and it emerges as the primary contributor to the projected decrease in DTR over the Tibetan Plateau in the future.展开更多
This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2...This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2014),and also investigates future changes in SCS MHWs based on simulations from three shared socioeconomic pathway(SSP)scenarios(SSP126,SSP245,and SSP585)using CMIP6 models.Results demonstrate that the CMIP6 models perform well in simulating the spatial-temporal distribution and intensity of SCS MHWs,with their multi-model ensemble(MME)results showing the best performance.The reasonable agreement between the observations and CMIP6 MME reveals that the increasing trends of SCS MHWs are attributed to the warming sea surface temperature trend.Under various SSP scenarios,the year 2040 emerges as pivotal juncture for future shifts in SCS MHWs,marked by distinct variations in changing rate and amplitudes.This is characterized by an accelerated decrease in MHWs frequency and a notably heightened increase in mean intensity,duration,and total days after 2040.Furthermore,the projection results for SCS MHWs suggest that the spatial pattern of MHWs remains consistent across future periods.However,the intensity shows higher consistency only during the near-term period(2021−2050),while notable inconsistencies are observed during the medium-term(2041−2070)and long-term(2071−2100)periods under the three SSP scenarios.During the nearterm period,the SCS MHWs are characterized by moderate and strong events with high frequencies and relatively shorter durations.In contrast,during the medium-term period,MHWs are also characterized by moderate and strong events,but with longer-lasting and more intense events under the SSP245 and SSP585 scenarios.However,in the long-term period,extreme MHWs become the dominant feature under the SSP585 scenario,indicating a substantial intensification of SCS MHWs,effectively establishing a near-permanent state.展开更多
The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been p...The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system,making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics.Here,we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement(S),multiplexity(M),and variousness(V)—which we name as the“impossible SMV triangle”dilemma.It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking,methodology,and practice norms.In this paper,we propose a theoretical framework called the polymorphic network environment(PNE),the first principle of which is to separate or decouple application network systems from the infrastructure environment and,under the given resource conditions,use core technologies such as the elementization of network baselines,the dynamic aggregation of resources,and collaborative software and hardware arrangements to generate the capability of the“network of networks.”This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions.An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.展开更多
This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analy...This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analyzing various research endeavors and key technologies, encompassing ontology structure,control and decision-making, and perception and interaction, a holistic overview of the current state of humanoid robot research is presented. Furthermore, emerging challenges in the field are identified, emphasizing the necessity for a deeper understanding of biological motion mechanisms, improved structural design,enhanced material applications, advanced drive and control methods, and efficient energy utilization. The integration of bionics, brain-inspired intelligence, mechanics, and control is underscored as a promising direction for the development of advanced humanoid robotic systems. This paper serves as an invaluable resource, offering insightful guidance to researchers in the field,while contributing to the ongoing evolution and potential of humanoid robots across diverse domains.展开更多
Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosec...Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies,especially given the impact of climate change on pest species invasion and distribution.Machine learning(ML),specifically ensemble models,has emerged as a powerful tool in predicting species distributions due to its ability to learn and make predictions based on complex data sets.Thus,this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions,providing the initial element for invasion risk assessment.We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors.Then,five machine learning models were employed to build two groups of ensembles,single-algorithm ensembles(ESA)and multi-algorithm ensembles(EMA),and compared their performances.In this research,the EMA did not always perform better than the ESA,and the ESA of Artificial Neural Network gave the highest performance while being cost-effective.Prediction results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes.However,the total area of suitable regions will not change significantly,occupying 16-20%of the total land surface(18%under current conditions).This research alerts policymakers and practitioners to the risk of PCNs’incursion into new regions.Additionally,this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.展开更多
Crohn’s disease(CD)is a chronic inflammatory disease of the digestive tract.The incidence of pediatric CD is increasing and is currently 2.5-11.4 per 100000 world-wide.Notably,approximately 25%of children with CD dev...Crohn’s disease(CD)is a chronic inflammatory disease of the digestive tract.The incidence of pediatric CD is increasing and is currently 2.5-11.4 per 100000 world-wide.Notably,approximately 25%of children with CD develop stricturing CD(SCD)that requires intervention.Symptomatic stricturing diseases refractory to pharmacological management frequently require non-pharmacological interventions.Non-pharmacological therapeutic strategies include endoscopic balloon dilatation,stricturoplasty,and surgical resection of the strictured seg-ment.However,strictures tend to recur postoperatively regardless of treatment modality.The lifetime risk of surgery in patients with childhood SCD remains at 50%-90%.Thus,new and emerging strategies,advanced diagnostic tools,and minimally invasive approaches are under investigation to improve the outcomes and overall quality of life of pediatric patients with SCD.展开更多
Childhood obesity is a critical global health concern with rising prevalence and significant long-term health implications.Recent studies have implicated gut microbiota in the development and progression of obesity.Th...Childhood obesity is a critical global health concern with rising prevalence and significant long-term health implications.Recent studies have implicated gut microbiota in the development and progression of obesity.This editorial analyzes the research conducted by Li et al,who utilized 16S rRNA gene sequencing to compare the gut microbiome of overweight and healthy-weight children.The study found significant differences in microbial diversity and composition between the two groups,with potential implications for understanding and managing childhood obesity.We analyzed the study’s advantages and drawbacks,proposing potential areas for future research to better understand the connection between gut microbiota and obesity.展开更多
Climate change is one of the major global challenges and it can have a significant influence on the behaviour and resilience of geotechnical structures.The changes in moisture content in soil lead to effective stress ...Climate change is one of the major global challenges and it can have a significant influence on the behaviour and resilience of geotechnical structures.The changes in moisture content in soil lead to effective stress changes and can be accompanied by significant volume changes in reactive/expansive soils.The volume change leads to ground movement and can exert additional stresses on structures founded on or within a shallow depth of such soils.Climate change is likely to amplify the ground movement potential and the associated problems are likely to worsen.The effect of atmospheric boundary interaction on soil behaviour has often been correlated to Thornthwaite moisture index(TMI).In this study,the long-term weather data and anticipated future projections for various emission scenarios were used to generate a series of TMI maps for Australia.The changes in TMI were then correlated to the depth of suction change(H s),an important input in ground movement calculation.Under all climate scenarios considered,reductions in TMI and increases in H s values were observed.A hypothetical design scenario of a footing on expansive soil under current and future climate is discussed.It is observed that a design that might be considered adequate under the current climate scenario,may fail under future scenarios and accommodations should be made in the design for such events.展开更多
Devices and networks constantly upgrade,leading to rapid technological evolution.Three-dimensional(3D)point cloud transmission plays a crucial role in aerial computing terminology,facilitating information exchange.Var...Devices and networks constantly upgrade,leading to rapid technological evolution.Three-dimensional(3D)point cloud transmission plays a crucial role in aerial computing terminology,facilitating information exchange.Various network types,including sensor networks and 5G mobile networks,support this transmission.Notably,Flying Ad hoc Networks(FANETs)utilize Unmanned Aerial Vehicles(UAVs)as nodes,operating in a 3D environment with Six Degrees of Freedom(6DoF).This study comprehensively surveys UAV networks,focusing on models for Light Detection and Ranging(LiDAR)3D point cloud compression/transmission.Key topics covered include autonomous navigation,challenges in video streaming infrastructure,motivations for Quality of Experience(QoE)enhancement,and avenues for future research.Additionally,the paper conducts an extensive review of UAVs,encompassing current wireless technologies,applications across various sectors,routing protocols,design considerations,security measures,blockchain applications in UAVs,contributions to healthcare systems,and integration with the Internet of Things(IoT),Artificial Intelligence(AI),Machine Learning(ML),and Deep Learning(DL).Furthermore,the paper thoroughly discusses the core contributions of LiDAR 3D point clouds in UAV systems and their future prediction along with mobility models.It also explores the prospects of UAV systems and presents state-of-the-art solutions.展开更多
Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-R...Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets.展开更多
Chronic heart failure(HF)is a clinical syndrome with high morbidity and mor-tality worldwide.Cardiac rehabilitation(CR)is a medically supervised program designed to maintain or improve cardiovascular health of people ...Chronic heart failure(HF)is a clinical syndrome with high morbidity and mor-tality worldwide.Cardiac rehabilitation(CR)is a medically supervised program designed to maintain or improve cardiovascular health of people living with HF,recommended by both American and European guidelines.A CR program con-sists of a multispecialty group including physicians,nurses,physiotherapists,trainers,nutritionists,and psychologists with the common purpose of improving functional capacity and quality of life of chronic HF patients.Physical activity,lifestyle,and psychological support are core components of a successful CR program.CR has been shown to be beneficial in all ejection fraction categories in HF and most patients,who are stable under medication,are capable of participating.An individualized exercise prescription should be developed on the basis of a baseline evaluation in all patients.The main modalities of exercise training are aerobic exercise and muscle strength training of different intensity and frequency.It is important to set the appropriate clinical outcomes from the beginning,in order to assess the effectiveness of a CR program.There are still significant limitations that prevent patients from participating in these programs and need to be solved.A significant limitation is the generally low quality of research in CR and the presence of negative trials,such as the rehabilitation after myocardial infarction trial,where comprehensive rehabilitation following myocardial infraction had no important effect on mortality,morbidity,risk factors,or health-related quality of life or activity.In the present editorial,we present all the updated knowledge and recommendations in CR programs.展开更多
Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is com...Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is commonly used in the treatment of various conditions such as autism and Parkinson's disease.However,there is limited reporting on the use of foot reflexology therapy for infants with sensorineural hearing loss(SNHL).Currently,there is no definitive conclusion on how foot reflexology therapy can influence hearing.This editorial holds some guiding significance regarding this clinical issue.The aim is to present physiological evidence of how foot reflexology therapy can impact infants with SNHL,thereby enhancing clinician’s awareness of foot reflexology in treating infants with SNHL.展开更多
The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holisti...The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.展开更多
Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovas...Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovascular information,and their data acquisition devices are quiteconvenient.In this study,a novel hybrid approach of fractional Fourier transform(FRFT)com-bined with linear and discrete wavelet transform(DWT)features extracted from PCG is proposedfor PCG multi-class classification.The proposed system enhances the fatigue detection performanceby combining optimized FRFT features with an effective aggregation of linear features and DWTfeatures.The FRFT technique is employed to convert the 1-D PCG signal into 2-D image which issent to a pre-trained convolutional neural network structure,called VGG-16.The features from theVGG-16 were concatenated with the linear and DWT features to form fused features.The fusedfeatures are sent to support vector machine(SVM)to distinguish six distinct fatigue levels.Experi-mental results demonstrate that the proposed fused features outperform other feature combinationssignificantly.展开更多
Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary mea...Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary measures for depression assessment.Non-biological markers-typically classified as verbal or non-verbal and deemed crucial evaluation criteria for depression-have not been effectively utilized.Specialized physicians usually require extensive training and experience to capture changes in these features.Advancements in deep learning technology have provided technical support for capturing non-biological markers.Several researchers have proposed automatic depression estimation(ADE)systems based on sounds and videos to assist physicians in capturing these features and conducting depression screening.This article summarizes commonly used public datasets and recent research on audio-and video-based ADE based on three perspectives:Datasets,deficiencies in existing research,and future development directions.展开更多
The 21^(st) century has started with several innovations in the medical sciences,with wide applications in health care management.This development has taken in the field of medicines(newer drugs/molecules),various too...The 21^(st) century has started with several innovations in the medical sciences,with wide applications in health care management.This development has taken in the field of medicines(newer drugs/molecules),various tools and technology which has completely changed the patient management including abdominal surgery.Surgery for abdominal diseases has moved from maximally invasive to minimally invasive(laparoscopic and robotic)surgery.Some of the newer medicines have its impact on need for surgical intervention.This article focuses on the development of these emerging molecules,tools,and technology and their impact on present surgical form and its future effects on the surgical intervention in gastroenterological diseases.展开更多
Esophageal cancer(EC)is an aggressive malignancy with a poor prognosis,ranking seventh in incidence and sixth cancer-related deaths globally.EC is classified in two main types,the esophageal squamous cell carcinoma(ES...Esophageal cancer(EC)is an aggressive malignancy with a poor prognosis,ranking seventh in incidence and sixth cancer-related deaths globally.EC is classified in two main types,the esophageal squamous cell carcinoma(ESCC)and esophageal adenocarcinoma(EAC),with ESCC being more common in Eastern Europe,South Asia,and Africa,while EAC is prevalent in Western Europe and North America.Molecular analysis identifies three subgroups of ESCC,each with distinct genetic mutations and treatment responses.Early-stage EC is often difficult to detect,leading to late-stage diagnoses that necessitate systemic drug therapies,including molecular-targeted therapies and immunotherapies.Immunotherapy,particularly immune checkpoint inhibitor,has shown promising results in improving survival rates for metastatic or persistent EC.It is particularly important to target to multidisciplinary combination therapies,integrating surgery,chemoradiotherapy,targeted therapy and immunotherapy.Additionally,radioimmunotherapy is being explored for its potential to enhance treatment efficacy,especially in advanced and metastatic tumors.However,the pathological complete response rate to neoadjuvant chemoradiotherapy remains suboptimal,highlighting the need for novel treatment strategies.Future research should focus on optimizing treatment combinations and identifying predictive biomarkers to improve clinical outcomes for EC patients.展开更多
文摘Medical care has undergone remarkable improvements over the past few decades.One of the most important innovative breakthroughs in modern medicine is the advent of minimally and less invasive treatments.The trend towards employing less invasive treatment has been vividly shown in the field of gastroenterology,particularly coloproctology.Parallel to foregut interventions,colorectal surgery has shifted towards a minimally invasive approach.Coloproctology,including both medical and surgical management of colorectal diseases,has undergone a remarkable paradigm shift.The treatment of both benign and malignant colorectal conditions has gradually transitioned towards more conservative and less inva-sive approaches.An interesting paradigm shift was the trend to avoid the need for radical resection of rectal cancer altogether in patients who showed complete response to neoadjuvant treatment.The trend of adopting less invasive appro-aches to treat various colorectal conditions does not seem to be stopping soon as further research on novel,more effective and safer methods is ongoing.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金supported by the National Natural Science Foundation of China(NSFC grants No.12172036,51774018)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT,IRT_17R06)+2 种基金the Russian Foundation for Basic Research,Grant Number 20‐55‐53032Russian State Task number 1021052706247‐7‐1.5.4the Government of Perm Krai,research project No.С‐26/628.
文摘Earthquakes triggered by dynamic disturbances have been confirmed by numerous observations and experiments.In the past several decades,earthquake triggering has attracted increasing attention of scholars in relation to exploring the mechanism of earthquake triggering,earthquake prediction,and the desire to use the mechanism of earthquake triggering to reduce,prevent,or trigger earthquakes.Natural earthquakes and large‐scale explosions are the most common sources of dynamic disturbances that trigger earthquakes.In the past several decades,some models have been developed,including static,dynamic,quasi‐static,and other models.Some reviews have been published,but explosiontriggered seismicity was not included.In recent years,some new results on earthquake triggering have emerged.Therefore,this paper presents a new review to reflect the new results and include the content of explosion‐triggered earthquakes for the reference of scholars in this area.Instead of a complete review of the relevant literature,this paper primarily focuses on the main aspects of dynamic earthquake triggering on a tectonic scale and makes some suggestions on issues that need to be resolved in this area in the future.
基金supported by The Second Tibetan Plateau Scientific Expedition and Research (STEP) program(Grant No. 2019QZKK0102)the National Natural Science Foundation of China (Grant No. 41975135)+1 种基金the Natural Science Foundation of Sichuan,China (Grant No. 2022NSFSC1092)funded by the China Scholarship Council。
文摘The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR variations over the Tibetan Plateau. It assesses 23 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6) using CN05.1 observational data as validation, evaluating their ability to simulate DTR over the Tibetan Plateau. Then, the evolution of DTR over the Tibetan Plateau under different shared socioeconomic pathway(SSP) scenarios for the near,middle, and long term of future projection are analyzed using 11 selected robustly performing models. Key findings reveal:(1) Among the models examined, BCC-CSM2-MR, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR,FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and INM-CM5-0 exhibit superior integrated simulation capability for capturing the spatiotemporal variability of DTR over the Tibetan Plateau.(2) Projection indicates a slightly increasing trend in DTR on the Tibetan Plateau in the SSP1-2.6 scenario, and decreasing trends in the SSP2-4.5, SSP3-7.0, and SPP5-8.5 scenarios. In certain areas, such as the southeastern edge of the Tibetan Plateau, western hinterland of the Tibetan Plateau, southern Kunlun, and the Qaidam basins, the changes in DTR are relatively large.(3) Notably, the warming rate of maximum temperature under SSP2-4.5, SSP3-7.0, and SPP5-8.5 is slower compared to that of minimum temperature, and it emerges as the primary contributor to the projected decrease in DTR over the Tibetan Plateau in the future.
基金The National Natural Science Foundation of China under contract Nos 42275024 and 42105040the Key R&D Program of China under contract No.2022YFE0203500+3 种基金the Guangdong Basic and Applied Basic Research Foundation under contract Nos 2023B1515020009 and 2024B1515040024the Youth Innovation Promotion Association CAS under contract No.2020340the Special Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences under contract No.SCSIO2023QY01the Science and Technology Planning Project of Guangzhou under contract No.2024A04J6275.
文摘This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2014),and also investigates future changes in SCS MHWs based on simulations from three shared socioeconomic pathway(SSP)scenarios(SSP126,SSP245,and SSP585)using CMIP6 models.Results demonstrate that the CMIP6 models perform well in simulating the spatial-temporal distribution and intensity of SCS MHWs,with their multi-model ensemble(MME)results showing the best performance.The reasonable agreement between the observations and CMIP6 MME reveals that the increasing trends of SCS MHWs are attributed to the warming sea surface temperature trend.Under various SSP scenarios,the year 2040 emerges as pivotal juncture for future shifts in SCS MHWs,marked by distinct variations in changing rate and amplitudes.This is characterized by an accelerated decrease in MHWs frequency and a notably heightened increase in mean intensity,duration,and total days after 2040.Furthermore,the projection results for SCS MHWs suggest that the spatial pattern of MHWs remains consistent across future periods.However,the intensity shows higher consistency only during the near-term period(2021−2050),while notable inconsistencies are observed during the medium-term(2041−2070)and long-term(2071−2100)periods under the three SSP scenarios.During the nearterm period,the SCS MHWs are characterized by moderate and strong events with high frequencies and relatively shorter durations.In contrast,during the medium-term period,MHWs are also characterized by moderate and strong events,but with longer-lasting and more intense events under the SSP245 and SSP585 scenarios.However,in the long-term period,extreme MHWs become the dominant feature under the SSP585 scenario,indicating a substantial intensification of SCS MHWs,effectively establishing a near-permanent state.
基金supported by the National Key Research and Development Program of China(2022YFB2901403)the Songshan Laboratory Project(221100210900-02).
文摘The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system,making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics.Here,we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement(S),multiplexity(M),and variousness(V)—which we name as the“impossible SMV triangle”dilemma.It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking,methodology,and practice norms.In this paper,we propose a theoretical framework called the polymorphic network environment(PNE),the first principle of which is to separate or decouple application network systems from the infrastructure environment and,under the given resource conditions,use core technologies such as the elementization of network baselines,the dynamic aggregation of resources,and collaborative software and hardware arrangements to generate the capability of the“network of networks.”This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions.An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.
基金supported by the National Natural Science Foundation of China(62303457,U21A20482)Project funded by China Postdoctoral Science Foundation (2023M733737)the National Key R&D Program of China(2022YFB3303800)。
文摘This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analyzing various research endeavors and key technologies, encompassing ontology structure,control and decision-making, and perception and interaction, a holistic overview of the current state of humanoid robot research is presented. Furthermore, emerging challenges in the field are identified, emphasizing the necessity for a deeper understanding of biological motion mechanisms, improved structural design,enhanced material applications, advanced drive and control methods, and efficient energy utilization. The integration of bionics, brain-inspired intelligence, mechanics, and control is underscored as a promising direction for the development of advanced humanoid robotic systems. This paper serves as an invaluable resource, offering insightful guidance to researchers in the field,while contributing to the ongoing evolution and potential of humanoid robots across diverse domains.
基金funded by the National Key R&D Program of China(2021YFD1400200)the Taishan Scholar Constructive Engineering Foundation of Shandong,China(tstp20221135)。
文摘Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies,especially given the impact of climate change on pest species invasion and distribution.Machine learning(ML),specifically ensemble models,has emerged as a powerful tool in predicting species distributions due to its ability to learn and make predictions based on complex data sets.Thus,this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions,providing the initial element for invasion risk assessment.We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors.Then,five machine learning models were employed to build two groups of ensembles,single-algorithm ensembles(ESA)and multi-algorithm ensembles(EMA),and compared their performances.In this research,the EMA did not always perform better than the ESA,and the ESA of Artificial Neural Network gave the highest performance while being cost-effective.Prediction results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes.However,the total area of suitable regions will not change significantly,occupying 16-20%of the total land surface(18%under current conditions).This research alerts policymakers and practitioners to the risk of PCNs’incursion into new regions.Additionally,this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.
文摘Crohn’s disease(CD)is a chronic inflammatory disease of the digestive tract.The incidence of pediatric CD is increasing and is currently 2.5-11.4 per 100000 world-wide.Notably,approximately 25%of children with CD develop stricturing CD(SCD)that requires intervention.Symptomatic stricturing diseases refractory to pharmacological management frequently require non-pharmacological interventions.Non-pharmacological therapeutic strategies include endoscopic balloon dilatation,stricturoplasty,and surgical resection of the strictured seg-ment.However,strictures tend to recur postoperatively regardless of treatment modality.The lifetime risk of surgery in patients with childhood SCD remains at 50%-90%.Thus,new and emerging strategies,advanced diagnostic tools,and minimally invasive approaches are under investigation to improve the outcomes and overall quality of life of pediatric patients with SCD.
基金Supported by The Hubei Pediatric Alliance Medical Research Project,No.HPAMRP202117.
文摘Childhood obesity is a critical global health concern with rising prevalence and significant long-term health implications.Recent studies have implicated gut microbiota in the development and progression of obesity.This editorial analyzes the research conducted by Li et al,who utilized 16S rRNA gene sequencing to compare the gut microbiome of overweight and healthy-weight children.The study found significant differences in microbial diversity and composition between the two groups,with potential implications for understanding and managing childhood obesity.We analyzed the study’s advantages and drawbacks,proposing potential areas for future research to better understand the connection between gut microbiota and obesity.
基金supported by President’s Scholarships from the University of South Australia towards his PhD study。
文摘Climate change is one of the major global challenges and it can have a significant influence on the behaviour and resilience of geotechnical structures.The changes in moisture content in soil lead to effective stress changes and can be accompanied by significant volume changes in reactive/expansive soils.The volume change leads to ground movement and can exert additional stresses on structures founded on or within a shallow depth of such soils.Climate change is likely to amplify the ground movement potential and the associated problems are likely to worsen.The effect of atmospheric boundary interaction on soil behaviour has often been correlated to Thornthwaite moisture index(TMI).In this study,the long-term weather data and anticipated future projections for various emission scenarios were used to generate a series of TMI maps for Australia.The changes in TMI were then correlated to the depth of suction change(H s),an important input in ground movement calculation.Under all climate scenarios considered,reductions in TMI and increases in H s values were observed.A hypothetical design scenario of a footing on expansive soil under current and future climate is discussed.It is observed that a design that might be considered adequate under the current climate scenario,may fail under future scenarios and accommodations should be made in the design for such events.
基金supported by the Researchers Supporting Project number(RSP2024R395),King Saud University,Riyadh,Saudi Arabia.
文摘Devices and networks constantly upgrade,leading to rapid technological evolution.Three-dimensional(3D)point cloud transmission plays a crucial role in aerial computing terminology,facilitating information exchange.Various network types,including sensor networks and 5G mobile networks,support this transmission.Notably,Flying Ad hoc Networks(FANETs)utilize Unmanned Aerial Vehicles(UAVs)as nodes,operating in a 3D environment with Six Degrees of Freedom(6DoF).This study comprehensively surveys UAV networks,focusing on models for Light Detection and Ranging(LiDAR)3D point cloud compression/transmission.Key topics covered include autonomous navigation,challenges in video streaming infrastructure,motivations for Quality of Experience(QoE)enhancement,and avenues for future research.Additionally,the paper conducts an extensive review of UAVs,encompassing current wireless technologies,applications across various sectors,routing protocols,design considerations,security measures,blockchain applications in UAVs,contributions to healthcare systems,and integration with the Internet of Things(IoT),Artificial Intelligence(AI),Machine Learning(ML),and Deep Learning(DL).Furthermore,the paper thoroughly discusses the core contributions of LiDAR 3D point clouds in UAV systems and their future prediction along with mobility models.It also explores the prospects of UAV systems and presents state-of-the-art solutions.
基金Under the auspices of the National Natural Science Foundation of China(No.41971219,41571168)Natural Science Foundation of Hunan Province(No.2020JJ4372)Philosophy and Social Science Fund Project of Hunan Province(No.18ZDB015)。
文摘Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets.
文摘Chronic heart failure(HF)is a clinical syndrome with high morbidity and mor-tality worldwide.Cardiac rehabilitation(CR)is a medically supervised program designed to maintain or improve cardiovascular health of people living with HF,recommended by both American and European guidelines.A CR program con-sists of a multispecialty group including physicians,nurses,physiotherapists,trainers,nutritionists,and psychologists with the common purpose of improving functional capacity and quality of life of chronic HF patients.Physical activity,lifestyle,and psychological support are core components of a successful CR program.CR has been shown to be beneficial in all ejection fraction categories in HF and most patients,who are stable under medication,are capable of participating.An individualized exercise prescription should be developed on the basis of a baseline evaluation in all patients.The main modalities of exercise training are aerobic exercise and muscle strength training of different intensity and frequency.It is important to set the appropriate clinical outcomes from the beginning,in order to assess the effectiveness of a CR program.There are still significant limitations that prevent patients from participating in these programs and need to be solved.A significant limitation is the generally low quality of research in CR and the presence of negative trials,such as the rehabilitation after myocardial infarction trial,where comprehensive rehabilitation following myocardial infraction had no important effect on mortality,morbidity,risk factors,or health-related quality of life or activity.In the present editorial,we present all the updated knowledge and recommendations in CR programs.
基金Supported by the Fundamental Research Funds for the Central Universities,No.2022CDJYGRH-004.
文摘Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is commonly used in the treatment of various conditions such as autism and Parkinson's disease.However,there is limited reporting on the use of foot reflexology therapy for infants with sensorineural hearing loss(SNHL).Currently,there is no definitive conclusion on how foot reflexology therapy can influence hearing.This editorial holds some guiding significance regarding this clinical issue.The aim is to present physiological evidence of how foot reflexology therapy can impact infants with SNHL,thereby enhancing clinician’s awareness of foot reflexology in treating infants with SNHL.
基金supported by the Third Xinjiang Scientific Expedition Program (2022xjkk1100)the Tianchi Talent Project
文摘The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.
基金the National Natural Sci-ence Foundation of China(No.62301056)the Fundamental Research Funds for Central Universities(No.2022QN005).
文摘Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovascular information,and their data acquisition devices are quiteconvenient.In this study,a novel hybrid approach of fractional Fourier transform(FRFT)com-bined with linear and discrete wavelet transform(DWT)features extracted from PCG is proposedfor PCG multi-class classification.The proposed system enhances the fatigue detection performanceby combining optimized FRFT features with an effective aggregation of linear features and DWTfeatures.The FRFT technique is employed to convert the 1-D PCG signal into 2-D image which issent to a pre-trained convolutional neural network structure,called VGG-16.The features from theVGG-16 were concatenated with the linear and DWT features to form fused features.The fusedfeatures are sent to support vector machine(SVM)to distinguish six distinct fatigue levels.Experi-mental results demonstrate that the proposed fused features outperform other feature combinationssignificantly.
基金Supported by Shandong Province Key R and D Program,No.2021SFGC0504Shandong Provincial Natural Science Foundation,No.ZR2021MF079Science and Technology Development Plan of Jinan(Clinical Medicine Science and Technology Innovation Plan),No.202225054.
文摘Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary measures for depression assessment.Non-biological markers-typically classified as verbal or non-verbal and deemed crucial evaluation criteria for depression-have not been effectively utilized.Specialized physicians usually require extensive training and experience to capture changes in these features.Advancements in deep learning technology have provided technical support for capturing non-biological markers.Several researchers have proposed automatic depression estimation(ADE)systems based on sounds and videos to assist physicians in capturing these features and conducting depression screening.This article summarizes commonly used public datasets and recent research on audio-and video-based ADE based on three perspectives:Datasets,deficiencies in existing research,and future development directions.
文摘The 21^(st) century has started with several innovations in the medical sciences,with wide applications in health care management.This development has taken in the field of medicines(newer drugs/molecules),various tools and technology which has completely changed the patient management including abdominal surgery.Surgery for abdominal diseases has moved from maximally invasive to minimally invasive(laparoscopic and robotic)surgery.Some of the newer medicines have its impact on need for surgical intervention.This article focuses on the development of these emerging molecules,tools,and technology and their impact on present surgical form and its future effects on the surgical intervention in gastroenterological diseases.
文摘Esophageal cancer(EC)is an aggressive malignancy with a poor prognosis,ranking seventh in incidence and sixth cancer-related deaths globally.EC is classified in two main types,the esophageal squamous cell carcinoma(ESCC)and esophageal adenocarcinoma(EAC),with ESCC being more common in Eastern Europe,South Asia,and Africa,while EAC is prevalent in Western Europe and North America.Molecular analysis identifies three subgroups of ESCC,each with distinct genetic mutations and treatment responses.Early-stage EC is often difficult to detect,leading to late-stage diagnoses that necessitate systemic drug therapies,including molecular-targeted therapies and immunotherapies.Immunotherapy,particularly immune checkpoint inhibitor,has shown promising results in improving survival rates for metastatic or persistent EC.It is particularly important to target to multidisciplinary combination therapies,integrating surgery,chemoradiotherapy,targeted therapy and immunotherapy.Additionally,radioimmunotherapy is being explored for its potential to enhance treatment efficacy,especially in advanced and metastatic tumors.However,the pathological complete response rate to neoadjuvant chemoradiotherapy remains suboptimal,highlighting the need for novel treatment strategies.Future research should focus on optimizing treatment combinations and identifying predictive biomarkers to improve clinical outcomes for EC patients.