为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。...为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。展开更多
Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion ...Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion integration differentiation(PID)was proposed by analyzing the signal transmission process and the dynamic characteristics of the grinding mechanism.The simulation results showed that compared with the classical PID control strategy,the system adjustment time was shortened by 98.7%,the overshoot was reduced by 5.1%,and the control error was 0.2%-0.5%when the system was stabilized.The optimized fuzzy control system had fast adjustment speeds,precise force control and stability.The experimental analysis of the surface morphology of the machined blade was carried out by the industrial robot abrasive grinding mechanism,and the correctness of the theoretical analysis and the effectiveness of the control strategy were verified.展开更多
This paper presents the design and performance analysis of Differential Evolution(DE)algorithm based Proportional-Integral-Derivative(PID)controller for temperature control of Continuous Stirred Tank Reactor(CSTR)plan...This paper presents the design and performance analysis of Differential Evolution(DE)algorithm based Proportional-Integral-Derivative(PID)controller for temperature control of Continuous Stirred Tank Reactor(CSTR)plant in che-mical industries.The proposed work deals about the design of Differential Evolu-tion(DE)algorithm in order to improve the performance of CSTR.In this,the process is controlled by controlling the temperature of the liquid through manip-ulation of the coolantflow rate with the help of modified Model Reference Adap-tive Controller(MRAC).The transient response of temperature process is improved by using PID Controller,Differential Evolution Algorithm based PID and fuzzy based DE controller.Finally,the temperature response is compared with experimental results of CSTR.展开更多
文摘为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。
基金Civil Project of China Aerospace Science and Technology CorporationUniversity-Industry Collaborative Education Program of Ministry of Education of China(No.220906517214433)。
文摘Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion integration differentiation(PID)was proposed by analyzing the signal transmission process and the dynamic characteristics of the grinding mechanism.The simulation results showed that compared with the classical PID control strategy,the system adjustment time was shortened by 98.7%,the overshoot was reduced by 5.1%,and the control error was 0.2%-0.5%when the system was stabilized.The optimized fuzzy control system had fast adjustment speeds,precise force control and stability.The experimental analysis of the surface morphology of the machined blade was carried out by the industrial robot abrasive grinding mechanism,and the correctness of the theoretical analysis and the effectiveness of the control strategy were verified.
文摘This paper presents the design and performance analysis of Differential Evolution(DE)algorithm based Proportional-Integral-Derivative(PID)controller for temperature control of Continuous Stirred Tank Reactor(CSTR)plant in che-mical industries.The proposed work deals about the design of Differential Evolu-tion(DE)algorithm in order to improve the performance of CSTR.In this,the process is controlled by controlling the temperature of the liquid through manip-ulation of the coolantflow rate with the help of modified Model Reference Adap-tive Controller(MRAC).The transient response of temperature process is improved by using PID Controller,Differential Evolution Algorithm based PID and fuzzy based DE controller.Finally,the temperature response is compared with experimental results of CSTR.
文摘针对观察型水下机器人在水下运动时易受暗流、波浪影响,造成操控困难、系统稳定性差等问题,建立遥控水下机器人(Remotely Operated Vehicle,ROV)不同运动的控制模型,考虑电机和导管螺旋桨推进器的传递函数对ROV控制系统的影响,确定定艏向和定深控制系统的闭环传递函数,结合模糊控制和比例积分微分(Proportional Integral Differential,PID)控制法,得到模糊PID控制器,基于MATLAB/Simulink环境进行ROV定深度运动仿真和ROV水平面艏向定偏角运动仿真。结果表明,与传统PID控制相比,模糊PID控制具有更优的ROV定艏向和定深度控制效果,不会发生超调现象,在抗干扰能力和响应速度方面具有明显的优势,可有效地实现ROV定艏向和定深度运动控制。
文摘挖掘机执行机构轨迹的精确控制是实现其智能化、无人化发展的基础。针对泵控/阀控相耦合的负载敏感(Load Sensitive,LS)系统挖掘机,提出了一种自适应的模糊PID控制方法(Fuzzy-PID)以实现LS挖掘机执行机构位姿的精确控制。该方法不依赖离线计算,可实现作业过程中PID参数的整定。建立LS挖掘机联合仿真模型对Fuzzy-PID的控制性能进行验证,结果表明,Fuzzy-PID控制精度更高,与PID相比,其均方根误差(Root Mean Square Error,RMSE)减少了23.85%。进一步,通过发动机转速及斗杆运行速度验证了Fuzzy-PID稳定性和响应性。研究结果可为负载敏感系统液压挖掘机智能化升级提供理论指导及工程应用价值。