期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control 被引量:11
1
作者 张友旺 桂卫华 《Journal of Central South University of Technology》 EI 2008年第2期256-263,共8页
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe... Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively. 展开更多
关键词 electro-hydraulic servo system adaptive dynamic recurrent fuzzy neural network(ADRFNN) gain adaptive slidingmode variable structure control(GASMVSC) secondary uncertainty
下载PDF
Using Adaptive Gain Scheduling LQR Method Control of Arm Driven Inverted Pendulum System Based on PIC18F4431 被引量:1
2
作者 Huu Chan Thanh Nguyen An-Wen Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第4期85-92,共8页
The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum wit... The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum with variable position of the ann. To solve this problem, this paper presents a mathematical model for arm driven inverted pendulum in mid-position configuration and an adaptive gain scheduling linear quadratic regulator control method for the stabilizing the inverted pendulum. The proposed controllers for arm driven inverted pendulum are simulated using MATLAB-SIMULINK and implemented on an experiment system using PIC 18F4431 mieroeontroller. The result of experiment system shows the control performance to be very good in a wide range stabilization of the arm position. 展开更多
关键词 Arm Driven Inverted Pendulum (ADIP) adaptive gain scheduling LQR control LQR control swing up pendlum
下载PDF
A fast-locking bang-bang phase-locked loop with adaptive loop gain controller 被引量:1
3
作者 Jincheng Yang Zhao Zhang +3 位作者 Nan Qi Liyuan Liu Jian Liu Nanjian Wu 《Journal of Semiconductors》 EI CAS CSCD 2018年第12期166-172,共7页
This paper proposes a fast-locking bang-bang phase-locked loop(BBPLL). A novel adaptive loop gain controller(ALGC) is proposed to increase the locking speed of the BBPLL. A novel bang-bang phase/frequency detector... This paper proposes a fast-locking bang-bang phase-locked loop(BBPLL). A novel adaptive loop gain controller(ALGC) is proposed to increase the locking speed of the BBPLL. A novel bang-bang phase/frequency detector(BBPFD) with adaptive-mode-selective circuits is proposed to select the locking mode of the BBPLL during the locking process. Based on the detected results of the BBPFD, the ALGC can dynamically adjust the overall gain of the loop for fast-locking procedure. Compared with the conventional BBPFD, only a few gates are added in the proposed BBPFD. Therefore, the proposed BBPFD with adaptive-mode-selective circuits is realized with little area and power penalties. The fast-locking BBPLL is implemented in a 65 nm CMOS technology. The core area of the BBPLL is 0.022 mm;. Measured results show that the BBPLL operates at a frequency range from0.6 to 2.4 GHz. When operating at 1.8 GHz, the power consumption is 3.1 mW with a 0.9-V supply voltage. With the proposed techniques, the BBPLL achieves a normalized locked time of 1.1μs @ 100 MHz frequency jump.The figure-of-merit of the fast-locking BBPLL is-334 dB. 展开更多
关键词 BBPLL fast-locking adaptive loop gain controller(ALGC) ADPLL BBPFD BBPD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部