期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Harmonic Resonance Analysis of Shale Gas Distribution Network with Phased Load
1
作者 Zhongjian Kang Lei Li 《Journal of Power and Energy Engineering》 2023年第1期18-28,共11页
Based on the background of achieving carbon peaking and carbon neutrality, the development and application of new high-power compressors, electric grid drilling RIGS and electric fracturing pump system provide new equ... Based on the background of achieving carbon peaking and carbon neutrality, the development and application of new high-power compressors, electric grid drilling RIGS and electric fracturing pump system provide new equipment support for the electric, green and intelligent development of shale gas fields in China. However, the harmonic pollution of shale gas grid becomes more serious due to the converter and frequency conversion device in the system, which easily causes harmonic resonance problem. Therefore, the harmonic resonance of shale gas grid is comprehensively analyzed and treated. Firstly, the working mechanism of compressor, electric drilling RIGS of the harmonic impedance model of electric fracturing pump system is established. Secondly, the main research methods of harmonic resonance analysis are introduced, and the basic principle of modal analysis is explained. Modal analysis method was used to analyze. Finally, harmonic resonance is suppressed. The results show that there may be multiple resonant frequency points in the distribution network changes, but these changes are relatively clear;if the original resonant frequency point of the resonant loop does not exist, the resonant frequency point disappears. The optimal configuration strategy of passive filter can effectively suppress harmonic resonance of distribution network in shale gas field. 展开更多
关键词 Shale gas distribution Grid Harmonic Resonance Modal Analysis Method Active Power Filter
下载PDF
Influence of Recirculated Flue Gas Distribution on Combustion and NOx Formation Characteristics in S-CO_(2) Coal-fired Boiler
2
作者 Peipei WANG Mingyan GU +3 位作者 Yao FANG Boyu JIANG Mingming WANG Ping CHEN 《Mechanical Engineering Science》 2021年第2期42-52,共11页
Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Com... Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases. 展开更多
关键词 S-CO_(2)boiler Pulverized coal combustion NOX emission Flue gas recirculation Recirculated flue gas distribution
下载PDF
Construction of Non-Equilibrium Gas Distribution Functions through Expansions in Peculiar Velocity Space
3
作者 Z.Y.Yuan Z.Chen +2 位作者 C.Shu Y.Y.Liu Z.L.Zhang 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第6期1456-1472,共17页
Gas distribution function plays a crucial role in the description of gas flows at the mesoscopic scale.In the presence of non-equilibrium flow,the distribution function loses its rotational symmetricity,making the mat... Gas distribution function plays a crucial role in the description of gas flows at the mesoscopic scale.In the presence of non-equilibrium flow,the distribution function loses its rotational symmetricity,making the mathematical derivation difficult.From both the Chapman-Enskog expansion and the Hermite polynomial expansion(Grad’s method),we observe that the non-equilibrium effect is closely related to the peculiar velocity space(C).Based on this recognition,we propose a new methodology to construct the non-equilibrium distribution function from the perspective of polynomial expansion in the peculiar velocity space of molecules.The coefficients involved in the non-equilibrium distribution function can be exactly determined by the compatibility conditions and the moment relationships.This new framework allows constructing non-equilibrium distribution functions at any order of truncation,and the ones at the third and the fourth order have been presented in this paper for illustration purposes.Numerical validations demonstrate that the new method is more accurate than the Grad’s method at the same truncation error for describing non-equilibrium effects.Two-dimensional benchmark tests are performed to shed light on the applicability of the new method to practical engineering problems. 展开更多
关键词 Non-equilibrium gas distribution function peculiar velocity space complete poly-nomial expansion
下载PDF
Distribution characteristics, exploration and development, geological theories research progress and exploration directions of shale gas in China 被引量:3
4
作者 Shi-zhen Li Zhi Zhou +7 位作者 Hai-kuan Nie Lei-fu Zhang Teng Song Wei-bin Liu Hao-han Li Qiu-chen Xu Si-yu Wei Shu Tao 《China Geology》 2022年第1期110-135,共26页
The shale gas resources in China have great potential and the geological resources of shale gas is over 100×10^(12)m^(3),which includes about 20×10^(12)m^(3) of recoverable resources.Organic-rich shales can ... The shale gas resources in China have great potential and the geological resources of shale gas is over 100×10^(12)m^(3),which includes about 20×10^(12)m^(3) of recoverable resources.Organic-rich shales can be divided into three types according to their sedimentary environments,namely marine,marine-continental transitional,and continental shales,which are distributed in 13 stratigraphic systems from the Mesoproterozoic to the Cenozoic.The Sichuan Basin and its surrounding areas have the highest geological resources of shale gas,and the commercial development of shale gas has been achieved in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in these areas,with a shale gas production of up to 20×10^(9)m^(3) in 2020.China has seen rapid shale gas exploration and development over the last five years,successively achieving breakthroughs and important findings in many areas and strata.The details are as follows.(1)Large-scale development of middle-shallow shale gas(burial depth:less than 3500 m)has been realized,with the productivity having rapidly increased;(2)breakthroughs have been constantly made in the development of deep shale gas(burial depth:3500-4500 m),and the ultradeep shale gas(burial depth:greater than 4500 m)is under testing;(3)breakthroughs have been made in the development of normal-pressure shale gas,and the assessment of the shale gas in complex tectonic areas is being accelerated;(4)shale gas has been frequently discovered in new areas and new strata,exhibiting a great prospect.Based on the exploration and development practice,three aspects of consensus have been gradually reached on the research progress in the geological theories of shale gas achieved in China.(1)in terms of deep-water fine-grained sediments,organic-rich shales are the base for the formation of shale gas;(2)in terms of high-quality reservoirs,the development of micro-nano organic matter-hosted pores serves as the core of shale gas accumulation;(3)in terms of preservation conditions,weak structural transformation,a moderate degree of thermal evolution,and a high pressure coefficient are the key to shale gas enrichment.As a type of important low-carbon fossil energy,shale gas will play an increasingly important role in achieving the strategic goals of peak carbon dioxide emissions and carbon neutrality.Based on the in-depth study of shale gas geological conditions and current exploration progress,three important directions for shale gas exploration in China in the next five years are put forward. 展开更多
关键词 Shale gas Shale gas distribution Formation era Deep-water fine-grained sediments Shale reservoirs Preservation conditions Exploration and development Wufeng-Longmaxi formations Exploration directions Oil-gas exploration engineering China
下载PDF
The gradual subduction-collision evolution model of Proto-South China Sea and its control on oil and gas 被引量:1
5
作者 Xiaojun Xie Wu Tang +5 位作者 Gongcheng Zhang Zhigang Zhao Shuang Song Shixiang Liu Yibo Wang Jia Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期123-137,共15页
This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The re... This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The results indicate that a series of arc-shaped ophiolite belts and calcalkaline magmatic rocks are developed in northern Borneo,both of which have the characteristics of gradually changing younger from west to east,and are direct signs of subduction and collision of PSCS.At the same time,the subduction of PSCS led to the formation of three accretion zones from the south to the north in Borneo,the Kuching belt,Sibu belt,and Miri belt.The sedimentary formation of northern Borneo is characterized by a three-layer structure,with the oceanic basement at the bottom,overlying the deep-sea flysch deposits of the Rajang–Crocker group,and the molasse sedimentary sequence that is dominated by river-delta and shallow marine facies at the top,recording the whole subduction–collision–orogeny process of PSCS.Further,seismic reflection and tomography also confirmed the subduction and collision of PSCS.Based on the geological records of the subduction and collision of PSCS,combined with the comprehensive analysis of segmented expansion and key tectonic events in the South China Sea,we establish the“gradual”subduction-collision evolution model of PSCS.During the late Eocene to middle Miocene,the Zengmu,Nansha,and Liyue–Palawan blocks were separated by West Baram Line and Balabac Fault,which collided with the Borneo block and Kagayan Ridge successively from the west to the east,forming several foreland basin systems,and PSCS subducted and closed from the west to the east.The subduction and extinction of PSCS controlled the oil and gas distribution pattern of southern South China Sea(SSCS)mainly in three aspects.First,the“gradual”closure process of PSCS led to the continuous development of many large deltas in SSCS.Second,the deltas formed during the subduction–collision of PSCS controlled the development of source rocks in the basins of SSCS.Macroscopically,the distribution and scale of deltas controlled the distribution and scale of source rocks,forming two types of source rocks,namely,coal measures and terrestrial marine facies.Microscopically,the difference of terrestrial higher plants carried by the delta controlled the proportion of macerals of source rocks.Third,the difference of source rocks mainly controlled the distribution pattern of oil and gas in SSCS.Meanwhile,the difference in the scale of source rocks mainly controlled the difference in the amount of oil and gas discoveries,resulting in a huge amount of oil and gas discoveries in the basin of SSCS.Meanwhile,the difference of macerals of source rocks mainly controlled the difference of oil and gas generation,forming the oil and gas distribution pattern of“nearshore oil and far-shore gas”. 展开更多
关键词 Proto-South China Sea gradual subduction-collision evolution model oil and gas distribution southern South China Sea BORNEO
下载PDF
Modeling parameters influencing city gas distribution sector based on factor analysis method
6
作者 Kriti Yadav Anirbid Sircar 《Petroleum Research》 2022年第1期144-154,共11页
City gas distribution(CGD)sector is influenced by several factors like policy,infrastructure,health,safety etc.In order to understand this sector,an exploratory factor analysis is conducted.The Exploratory Factor Anal... City gas distribution(CGD)sector is influenced by several factors like policy,infrastructure,health,safety etc.In order to understand this sector,an exploratory factor analysis is conducted.The Exploratory Factor Analysis(EFA)survey meticulously simplifies interconnected steps and examines the possible causal factor structure of a series of measured variables without hitting a predetermined result model.In this paper,the factor analysis is performed in three broad categories namely:managerial level,technical level and site workers to understand the most influencing factor of the sector.60 questionnaires were prepared to get feedback on parameters affecting CGD sector.The survey is performed by various means,like google form,email,phone calls,appointments with employees and personal meetings.It has been observed from the survey that the nine factors influences this sector and requires certain modifications for the development.Out of these nine factors,five were selected for the analysis which are infrastructure factor,policy factor,gas consumption factor,total energy demand factor and economy factor.The factor analysis has been performed in five major steps,namely factor analysis applicability,selection of factors,loading of factors,significance test of factors and factor loading matrix analysis.The results obtained from these exploratory factor analysis shows that variables like infrastructure,total energy demand and economy affects the CGD market most than the policy and gas consumption. 展开更多
关键词 City gas distribution Factor analysis Exploratory factor analysis VARIABLES Natural gas
原文传递
Fundamentals and developments of compressed biogas in city gas distribution network in India:A review
7
作者 Kriti Yadav Anirbid Sircar 《Petroleum Research》 2022年第3期409-418,共10页
Biogas is a significant renewable source as well as an alternative energy carrier provided by Anaerobic Digestion(AD)of biodegradable food wastes and other organic materials.This paper describes some major facts about... Biogas is a significant renewable source as well as an alternative energy carrier provided by Anaerobic Digestion(AD)of biodegradable food wastes and other organic materials.This paper describes some major facts about biogas along with the barriers and adaptation of CBG in society,it also narrates the types of feedstocks available for biogas generation and what are the major sources in India.In this study,different stages of anaerobic digestion are discussed such as hydrolysis,acidogenesis,acetogenesis and methanogenesis for biogas production.After its purification,the biogas can be used as a fuel for domestic as well as transportation purposes.A glimpse of biogas like purification techniques like biological desulphurization,iron chloride dosing,pressure swing adsorption,chemical scrubbing and water scrubbing is given,the major additions of national policy of biofuels in 2018 is also highlighted.It has been found that in India,majorly pressure swing adsorption and water scrubbing methods are used for biogas purification,currently,the country has 12 commercial CBG plants with a total CBG output capacity of 18,461.7 tonnes per year,which is just 0.06 percent of the total ability.The details of the plants along with their CBG production capacity are described,and sustainable alternative towards affordable transportation(SATAT)launched by MoPNG is introduced in this study,furthermore,the features and types of models suggested by Ministry of Petroleum and Natural Gas(MoPNG)to introduce compressed biogas(CBG)in city gas distribution(CGD)network are discussed. 展开更多
关键词 Compressed biogas Anaerobic digestion City gas distribution Water scrubbing Pressure swing adsorption
原文传递
Distribution Characteristics and Accumulation Model for the Coal-formed Gas Generated from Permo-Carboniferous Coal Measures in Bohai Bay Basin, China: A Review 被引量:4
8
作者 JIANG Youlu HU Hongjin +1 位作者 Jon GLUYAS ZHAO Kai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第6期1869-1884,共16页
Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas r... Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas reserves from this source rock remain low to date,and the distribution characteristics and accumulation model for the coal-formed gas are not clear.Here we review the coal-formed gas deposits formed from the Permo-Carboniferous coal measures in the Bohai Bay Basin.The accumulations are scattered,and dominated by middle-small sized gas fields,of which the proven reserves ranging from 0.002 to 149.4×108 m3 with an average of 44.30×108 m3 and a mid-point of 8.16×108 m3.The commercially valuable gas fields are mainly found in the central and southern parts of the basin.Vertically,the coal-formed gas is accumulated at multiple stratigraphic levels from Paleogene to Archaeozoic,among which the Paleogene and PermoCarboniferous are the main reservoir strata.According to the transporting pathway,filling mechanism and the relationship between source rocks and reservoir,the coal-formed gas accumulation model can be defined into three types:"Upward migrated,fault transported gas"accumulation model,"Laterally migrated,sandbody transported gas"accumulation model,and"Downward migrated,sub-source,fracture transported gas"accumulation model.Source rock distribution,thermal evolution and hydrocarbon generation capacity are the fundamental controlling factors for the macro distribution and enrichment of the coal-formed gas.The fault activity and the configuration of fault and caprock control the vertical enrichment pattern. 展开更多
关键词 distribution characteristics of natural gas accumulation model coal-formed gas Permo-Carboniferous coal measures Bohai Bay Basin
下载PDF
Distribution and Development of Unconventional Gas in China
9
作者 Wang Nan Pei Ling +1 位作者 Lei Danfeng Zeng Bo 《China Oil & Gas》 CAS 2013年第4期26-31,共6页
China is abundant in unconventional gas, and stunning growth of gas reserves and production therefore can be expected in foreseeable future because of the exploration and development of the gas. For the next 5 to 10 y... China is abundant in unconventional gas, and stunning growth of gas reserves and production therefore can be expected in foreseeable future because of the exploration and development of the gas. For the next 5 to 10 years, conventional gas will still dominate energy market but in a long run, its influence will weaken gradually as unconventional gas kicks in and expands. Though the exploration and development of unconventional gas in China is still at a very early stage, three Chinese oil majors have already assessed the resources, including tight gas, coal-bed methane, shale gas and gas hydrate. 展开更多
关键词 In distribution and Development of Unconventional gas in China CBM CNPC
下载PDF
Distribution Characteristics of Newly Discovered Gas Fields in China
10
《China Oil & Gas》 CAS 1997年第1期41-41,共1页
关键词 distribution Characteristics of Newly Discovered gas Fields in China
下载PDF
PROBING INTO DEVELOPMENT OF SHORE OIL AND GAS RESOURCES AND DISTRIBUTION OF PETROLEUM INDUSTRY OF LIAONING PROVINCE
11
《聊城大学学报(自然科学版)》 1997年第4期82-83,88,共3页
关键词 gas PROBING INTO DEVELOPMENT OF SHORE OIL AND gas RESOURCES AND distribution OF PETROLEUM INDUSTRY OF LIAONING PROVINCE
下载PDF
A three dimensional visualized physical simulation for natural gas charging in the micro-nano pore system 被引量:1
12
作者 QIAO Juncheng ZENG Jianhui +7 位作者 XIA Yuxuan CAI Jianchao CHEN Dongxia JIANG Shu HAN Guomeng CAO Zhe FENG Xiao FENG Sen- 《Petroleum Exploration and Development》 CSCD 2022年第2期349-362,共14页
A micro-nano pore three-dimensional visualized real-time physical simulation of natural gas charging, in-situ pore-scale computation, pore network modelling, and apparent permeability evaluation theory were used to in... A micro-nano pore three-dimensional visualized real-time physical simulation of natural gas charging, in-situ pore-scale computation, pore network modelling, and apparent permeability evaluation theory were used to investigate laws of gas and water flow and their distribution, and controlling factors during the gas charging process in low-permeability(tight) sandstone reservoir. By describing features of gas-water flow and distribution and their variations in the micro-nano pore system, it is found that the gas charging in the low permeability(tight) sandstone can be divided into two stages, expansion stage and stable stage. In the expansion stage, the gas flows continuously first into large-sized pores then small-sized pores, and first into centers of the pores then edges of pores;pore-throats greater than 20 μm in radius make up the major pathway for gas charging. With the increase of charging pressure, movable water in the edges of large-sized pores and in the centers of small pores is displaced out successively. Pore-throats of 20-50 μm in radius and pore-throats less than 20 μm in radius dominate the expansion of gas charging channels at different stages of charging in turn, leading to reductions in pore-throat radius, throat length and coordination number of the pathway, which is the main increase stage of gas permeability and gas saturation. Among which, pore-throats 30-50 μm in radius control the increase pattern of gas saturation. In the stable stage, gas charging pathways have expanded to the maximum, so the pathways keep stable in pore-throat radius, throat length, and coordination number, and irreducible water remains in the pore system, the gas phase is in concentrated clusters, while the water phase is in the form of dispersed thin film, and the gas saturation and gas permeability tend stable. Connected pore-throats less than 20 μm in radius control the expansion limit of the charging pathways, the formation of stable gas-water distribution, and the maximum gas saturation. The heterogeneity of connected pore-throats affects the dynamic variations of gas phase charging and gas-water distribution. It can be concluded that the pore-throat configuration and heterogeneity of the micro-nanometer pore system control the dynamic variations of the low-permeability(tight) sandstone gas charging process and gas-water distribution features. 展开更多
关键词 low permeability(tight)sandstone gas charging three-dimensional visualization physical simulation micro-nanometer pore network gas and water flow and distribution
下载PDF
Creation and Evaluation of Construction Guidelines Using CFD for Low Pressure Plasma Gas Feed-in Systems to Homogenize the Precursor Gas Flow 被引量:2
13
作者 Gustavo Simiema de Freitas Barbosa Klaus Vissing Bernd Mayer 《Open Journal of Fluid Dynamics》 2016年第4期391-405,共16页
The local gas-flow behavior is almost unknown for low pressure plasma systems, except parallel plate reactors for semiconductor purposes. To overcome this lack of knowledge, this study starts with the influence invest... The local gas-flow behavior is almost unknown for low pressure plasma systems, except parallel plate reactors for semiconductor purposes. To overcome this lack of knowledge, this study starts with the influence investigation of the gas feed-in systems technical layout on the homogeneity of the gas supply for large volume plasma enhanced chemical vapor deposition (PECVD) chambers. Computational fluid dynamics (CFD) simulations are used as a tool to determine velocity and pressure distribution inside the gas feed-in pipe as well as in the PECVD-chamber itself. The parameters varied were: flow rate, pipe length, number of holes, hole diameter and aspect ratio of the pipe section. The calculated pressure values are compared with the experimentally measured ones to validate the simulation results. An excellent conformity of the calculated and measured pressures is observed. With the aim to evaluate the homogeneity of gas distribution through the pipe holes the nonuniformity coefficient (Φ) was created. The results show the influence of each layout parameter in the homogeneity of the gas distribution. Hence in future correct technical layouts of gas feed-in systems can easily be applied. With these results construction guidelines has been formulated. 展开更多
关键词 gas Feed-in Systems gas Flow distribution CFD PECVD Coating
下载PDF
Experimental characterization and CFD simulation of gas maldistribution in turbulent fluidization of Group A particles
14
作者 Maurizio Troiano Benjamin Amblard +3 位作者 Sina Tebianian Roberto Solimene Piero Salatino Thierry Gauthier 《Particuology》 SCIE EI CAS CSCD 2023年第11期192-203,共12页
The study presented hereby investigates experimentally and with CFD simulations the gas distribution effect on the hydrodynamic of a Geldart Group A turbulent fluidized bed. Experiments were carried out on a cold flow... The study presented hereby investigates experimentally and with CFD simulations the gas distribution effect on the hydrodynamic of a Geldart Group A turbulent fluidized bed. Experiments were carried out on a cold flow fluidized bed column with an even and uneven gas distribution. Local solid volume fraction profiles were measured using optical probes at different bed heights and along two radial directions. Optical probe measurements allow catching a clear hydrodynamic difference between both even and uneven gas distributions. These results were then used to assess CFD simulations with the code Barracuda^(TM) (MP-PIC approach). It is noteworthy that the choice of drag correlation and boundary conditions strongly influences the agreement between the experimental and CFD results. Once the correct parameters are chosen, CFD simulations captured the effect of gas distribution changes. 展开更多
关键词 Characterization of multiphase reactors Fluidized bed TURBULENT gas distribution JET Optical probe CFD simulations
原文传递
20 ppm Anhydrous Ammonia Odor Agent Proposed for Hydrogen Fuel for Safe Detection of Leaks
15
作者 Daniel Nelson Russell 《Detection》 CAS 2023年第1期1-6,共6页
Preferably 20 ppm anhydrous ammonia (NH<sub>3</sub>) is proposed to be added to hydrogen fuel (H) made from renewable energy sources (green hydrogen), so that H leaks may be easily detectable by smell, but... Preferably 20 ppm anhydrous ammonia (NH<sub>3</sub>) is proposed to be added to hydrogen fuel (H) made from renewable energy sources (green hydrogen), so that H leaks may be easily detectable by smell, but not dangerously toxic. Including this odor agent, would allow H to be distributed safely in pipes, as required by law, and it would allow H to be safely stored, transported, and exported for sale, and widely commercialized. Further research is suggested to identify optimum pressure, temperature, and automated technique for injecting NH<sub>3</sub> into H, and to chart the minimum concentration needed, as a function of temperature and humidity. An application to make hypersonic H burning aircraft safer for ground maintenance crews is proposed. An ability to make, store and distribute H, made from local sources of renewable energy, would reduce a need for fossil fuels, especially in poor, remote communities, where it could improve their economy by creating an export product for sale, while reducing pollution. 展开更多
关键词 HYDROGEN Renewable Energy Anhydrous Ammonia Hydrogen gas distribution System ODORANT Odor Agent Green Hydrogen Hypersonic Aircraft
下载PDF
Distribution of reformed coke oven gas in a shaft furnace 被引量:1
16
作者 Xin Jiang Jia-xin Yu +4 位作者 Lin Wang Dong-wen Xiang Qiang-jian Gao Hai-yan Zheng Feng-man Shen 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2020年第12期1382-1390,共9页
In recent years, the reformed coke oven gas (COG) was proposed to be used as reducing gas in a shaft furnace. A mathematical model of gas flow based on the reformed COG was built. The effects of the pressure ratio of ... In recent years, the reformed coke oven gas (COG) was proposed to be used as reducing gas in a shaft furnace. A mathematical model of gas flow based on the reformed COG was built. The effects of the pressure ratio of reducing gas to cooling gas (k) on the gas distribution in the shaft furnace were investigated. The calculation results show that k is an important operation parameter, which can obviously affect the gas distribution in the shaft furnace. The value of k should be compromised. Both too big and too small k values are not appropriate, and the most reasonable value for k is 1:1.33.Under this condition, the utilization coefficient of reducing gas, the utilization coefficient of cooling gas and the coefficient of upward gas are 0.94, 0.92 and 1.03, respectively. Based on the validation of physical experiments, the calculated values of the model agreed well with the physical experimental data. Thus, the established model can properly describe the reformed COG distribution in an actual shaft furnace. 展开更多
关键词 Direct reduction Shaft furnace Coke oven gas gas distribution Pressure ratio Reducing gas Cooling gas
原文传递
Differential structure of Ordovician karst zone and hydrocarbon enrichment in paleogeomorphic units in Tahe area,Tarim Basin,NW China 被引量:1
17
作者 ZHANG San JIN Qjang +4 位作者 HU Mingyi HAN Qichao SUN Jianfang CHENG Fuqi ZHANG Xudong 《Petroleum Exploration and Development》 CSCD 2021年第5期1113-1125,共13页
Based on a large number of drilling,logging,seismic and production data,the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area,Tarim Basin,are discus... Based on a large number of drilling,logging,seismic and production data,the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area,Tarim Basin,are discussed by analyzing the karst drainages and flowing channels.The karst paleogeomorphy of Ordovician in Tahe area is composed of watershed,karst valley and karst basin.The watershed has epikarst zone of 57.8 m thick on average and vadose karst zone of 115.2 m thick on average with dense faults,fractures and medium-small fracture-caves,and 76.5%of wells in this area have cumulative production of more than 5×10^(4) t per well.The karst valleys have epikarst zone,vadose karst zone and runoff karst zone,with an average thickness of 14.6,26.4 and 132.6 m respectively.In the runoff karst zone,the caves of subsurface river are mostly filled by fine sediment,with a filling rate up to 86.8%,and 84.9%of wells in this area have cumulative production of less than 2×10^(4) t per well.The karst basin has no karst zone,but only fault-karst reservoirs in local fault zones,which are up to 600 m thick and closely developed within 1 km around faults.Different karst landforms have different water flowing pattern,forming different karst zone structures and resulting in differential distribution of oil and gas.The watershed has been on the direction of oil and gas migration,so medium-small sized connected fracture-caves in this area have high filling degree of oil and gas,and most wells in this area have high production.Most caves in subsurface river are filled due to strong sedimentation and transportation of the river,so the subsurface river sediment has low hydrocarbon abundance and more low production oil wells.The faults linking source rock are not only the water channels but also the oil-gas migration pathways,where the karst fractures and caves provide huge reservoir space for oil and gas accumulation. 展开更多
关键词 PALEOKARST karst drainage WATERSHED fracture-cave structure oil and gas distribution Tahe Oilfield ORDOVICIAN Tarim Basin
下载PDF
SIMETAL COREX^(■)——current status and development
18
作者 Christian BOHM Wolfgang GRILL Hado HECKMANN 《Baosteel Technical Research》 CAS 2010年第S1期6-,共1页
The paper will give an overview about the COREX? plants in operation,show the new developments and findings for the COREX? process i.e.areal gas distribution and coal briquetting and the status of the FINEX? technolog... The paper will give an overview about the COREX? plants in operation,show the new developments and findings for the COREX? process i.e.areal gas distribution and coal briquetting and the status of the FINEX? technology will be given. 展开更多
关键词 COREX^(■) areal gas distribution coal briquetting FINEX^(■)
下载PDF
Application of the finite element method for evaluating the stress distribution in buried damaged polyethylene gas pipes
19
作者 R.Khademi-Zahedi 《Underground Space》 SCIE EI 2019年第1期59-71,共13页
During the loading process,buried gas pipes can experience severe stresses due to soil-structure interaction,the presence of traffic load,the soil’s column weight,daily and/or seasonal temperature changes and uniform... During the loading process,buried gas pipes can experience severe stresses due to soil-structure interaction,the presence of traffic load,the soil’s column weight,daily and/or seasonal temperature changes and uniform internal pressure.In this research,the finite element method is employed to evaluate the behavior of buried Medium Density Polyethylene(MDPE)pipes which have been subjected to damage at the pipe crown.The modeled pipe damage ranges from a very small circular hole to a large circular hole and elliptic holes with various minor to major diameter ratios,a/b,to simulate circular to crack-shaped defects.The computer simulation and stress analyses were performed using the ANSYS software finite element package.The stress distribution around the defect was determined under the aforementioned mechanical and thermal loading conditions.Then,the maximum values of Von Mises stresses in the damaged buried PE pipes,which were evaluated by finite element solution,were compared with their corresponding reduced strength for safe operation with a life expectancy of fifty years.Based on the results,the maximum Von Mises stress values in the defective buried polyethylene gas pipeline are significantly above the pipe strength limit at 35℃.The previously mentioned stress values increase with the following factors:temperature increase,increase in circular hole diameter and decrease in elliptic hole diameter ratio(a/b).The maximum stress in the damaged PE pipe is due to the simultaneous loading effects of soil column weight,internal pressure,vehicle wheel load and pipe temperature increase.Additionally,the novel finite element models and stress plots for the buried damaged pipe and the pipe material allowable strength will be used to investigate the correct repair method for the damaged gas pipeline and to choose the best patch arrangement which will assure a safe repair. 展开更多
关键词 Buried gas distribution pipes Circular and elliptical defects Medium Density Polyethylene(MDPE) Von Mises stress Finite element method Temperature variation
下载PDF
Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift, Tarim Basin, NW China
20
作者 JIANG Tongwen HAN Jianfa +5 位作者 WU Guanghui YU Hongfeng SU Zhou XIONG Chang CHEN Jun ZHANG Huifang 《Petroleum Exploration and Development》 2020年第2期229-241,共13页
Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon a... Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon accumulation in the Tazhong uplift, Tarim Basin are investigated. The results show that the oil and gas in the Tazhong uplift has the characteristics of complex accumulation mainly controlled by faults, and more than 80% of the oil and gas reserves are enriched along fault zones. There are large thrust and strike-slip faults in the Tazhong uplift, and the coupling relationship between the formation and evolution of the faults and accumulation determine the difference in complex oil and gas accumulations. The active scale and stage of faults determine the fullness of the traps and the balance of the phase, that is, the blocking of the transport system, the insufficient filling of oil and gas, and the unsteady state of fluid accumulation are dependent on the faults. The multi-period tectonic sedimentary evolution controls the differences of trap conditions in the fault zones, and the multi-phase hydrocarbon migration and accumulation causes the differences of fluid distribution in the fault zones. The theory of differential oil and gas accumulation controlled by fault is the key to the overall evaluation, three-dimensional development and discovery of new reserves in the Tazhong uplift. 展开更多
关键词 Tarim Basin Tazhong uplift fault zone complex oil and gas accumulation oil and gas distribution difference main controlling factor
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部