期刊文献+
共找到559篇文章
< 1 2 28 >
每页显示 20 50 100
State of health prediction for lithium-ion batteries based on ensemble Gaussian process regression 被引量:1
1
作者 HUI Zhouli WANG Ruijie +1 位作者 FENG Nana YANG Ming 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期397-407,共11页
The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ... The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability. 展开更多
关键词 lithium-ion batteryies(LIBs) ensemble gaussian process regression(Egpr) state of health(SOH) health indicators(HIs) gannet optimization algorithm(GOA)
下载PDF
Optimization of Generator Based on Gaussian Process Regression Model with Conditional Likelihood Lower Bound Search
2
作者 Xiao Liu Pingting Lin +2 位作者 Fan Bu Shaoling Zhuang Shoudao Huang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期32-42,共11页
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi... The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems. 展开更多
关键词 Generator optimization gaussian process regression(gpr) Conditional Likelihood Lower Bound Search(CLLBS) Constraint improvement expectation(CEI) Finite element calculation
下载PDF
Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm
3
作者 Zhiqiang Wang Dakuo He Haotian Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期167-179,共13页
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust... Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process. 展开更多
关键词 Weighted gaussian process regression Index-oriented adaptive differential evolution Operational optimization Copper flotation process
下载PDF
Quality prediction of batch process using the global-local discriminant analysis based Gaussian process regression model
4
作者 卢春红 顾晓峰 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期80-86,共7页
The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR... The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR) approach is developed for the quality prediction of nonlinear and multiphase batch processes. After the collected data is preprocessed through batchwise unfolding, the hidden Markov model (HMM) is applied to identify different operation phases. A GLDA algorithm is also presented to extract the appropriate process variables highly correlated with the quality variables, decreasing the complexity of modeling. Besides, the multiple local GPR models are built in the reduced- dimensional space for all the identified operation phases. Furthermore, the HMM-based state estimation is used to classify each measurement sample of a test batch into a corresponding phase with the maximal likelihood estimation. Therefore, the local GPR model with respect to specific phase is selected for online prediction. The effectiveness of the proposed prediction approach is demonstrated through the multiphase penicillin fermentation process. The comparison results show that the proposed GLDA-GPR approach is superior to the regular GPR model and the GPR based on HMM (HMM-GPR) model. 展开更多
关键词 quality prediction global-local discriminantanalysis gaussian process regression hidden Markov model soft sensor
下载PDF
Gaussian process regression-based quaternion unscented Kalman robust filter for integrated SINS/GNSS 被引量:6
5
作者 LYU Xu HU Baiqing +3 位作者 DAI Yongbin SUN Mingfang LIU Yi GAO Duanyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1079-1088,共10页
High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important... High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method. 展开更多
关键词 integrated navigation gaussian process regression(gpr) QUATERNION Kalman filter ROBUSTNESS
下载PDF
基于DOD-LN-GPR模型的锂离子电池SOH估计方法 被引量:1
6
作者 黄佳茵 白俊琦 贤燕华 《太阳能学报》 北大核心 2025年第2期60-69,共10页
针对锂离子电池健康状态(SOH)的估计中预测精度不高、健康特征输入冗余、数据预处理繁琐的问题,提出一种基于放电深度(DOD)的改进高斯过程回归SOH预测模型。在锂离子电池的放电曲线中,计算出锂离子电池的放电深度,并将其作为唯一的健康... 针对锂离子电池健康状态(SOH)的估计中预测精度不高、健康特征输入冗余、数据预处理繁琐的问题,提出一种基于放电深度(DOD)的改进高斯过程回归SOH预测模型。在锂离子电池的放电曲线中,计算出锂离子电池的放电深度,并将其作为唯一的健康特征。同时改进传统的高斯过程回归(GPR)算法,利用线性(LIN)和神经网络(NN)的组合核函数(LIN+NN)拟合锂离子电池容量全局衰退和局部波动的趋势,从而建立DOD-LN-GPR锂离子电池SOH估计模型。在NASA数据集中,首先进行不同核函数的实验比对,验证所提组合核函数预测精度的优势;其次,通过减小训练集与测试集比例,证明所提估计方法在少量训练样本上仍能有较好的预测效果;最后,将所提DOD-LN-GPR模型在不同训练集下与其他SOH估计模型进行对比,结果表明该模型具有较好的精度和鲁棒性。 展开更多
关键词 锂离子电池 状态估计 电池管理系统 高斯过程回归 放电深度
原文传递
A genetic Gaussian process regression model based on memetic algorithm 被引量:2
7
作者 张乐 刘忠 +1 位作者 张建强 任雄伟 《Journal of Central South University》 SCIE EI CAS 2013年第11期3085-3093,共9页
Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance o... Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance of Gaussian process model.However,the common-used algorithm has the disadvantages of difficult determination of iteration steps,over-dependence of optimization effect on initial values,and easily falling into local optimum.To solve this problem,a method combining the Gaussian process with memetic algorithm was proposed.Based on this method,memetic algorithm was used to search the optimal hyper parameters of Gaussian process regression(GPR)model in the training process and form MA-GPR algorithms,and then the model was used to predict and test the results.When used in the marine long-range precision strike system(LPSS)battle effectiveness evaluation,the proposed MA-GPR model significantly improved the prediction accuracy,compared with the conjugate gradient method and the genetic algorithm optimization process. 展开更多
关键词 gaussian process hyper-parameters optimization memetic algorithm regression model
下载PDF
Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes 被引量:10
8
作者 Congli Mei Yong Su +2 位作者 Guohai Liu Yuhan Ding Zhiling Liao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第1期116-122,共7页
The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation proce... The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes. 展开更多
关键词 Dynamic modeling process systems Instrumentation gaussian mixture regression Fermentation processes
下载PDF
Fast Remaining Capacity Estimation for Lithium-ion Batteries Based on Short-time Pulse Test and Gaussian Process Regression 被引量:2
9
作者 Aihua Ran Ming Cheng +7 位作者 Shuxiao Chen Zheng Liang Zihao Zhou Guangmin Zhou Feiyu Kang Xuan Zhang Baohua Li Guodan Wei 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期238-246,共9页
It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integr... It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity. 展开更多
关键词 capacity estimation data-driven method gaussian process regression lithium-ion battery pulse tests
下载PDF
A Gaussian process regression-based sea surface temperature interpolation algorithm 被引量:1
10
作者 Yongshun ZHANG Miao FENG +2 位作者 Weimin ZHANG Huizan WANG Pinqiang WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第4期1211-1221,共11页
The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provid... The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provide an initial or boundary field for higher-resolution regional ocean models.However,traditional interpolation methods(nearest neighbor interpolation,bilinear interpolation,and bicubic interpolation)lack physical constraints and can generate significant errors at land-sea boundaries and around islands.In this paper,a machine learning method is used to design an interpolation algorithm based on Gaussian process regression.The method uses a multiscale kernel function to process two-dimensional space meteorological ocean processes and introduces multiscale physical feature information(sea surface wind stress,sea surface heat flux,and ocean current velocity).This greatly improves the spatial resolution of ocean features and the interpolation accuracy.The eff ectiveness of the algorithm was validated through interpolation experiments relating to sea surface temperature(SST).The root mean square error(RMSE)of the interpolation algorithm was 38.9%,43.7%,and 62.4%lower than that of bilinear interpolation,bicubic interpolation,and nearest neighbor interpolation,respectively.The interpolation accuracy was also significantly better in off shore area and around islands.The algorithm has an acceptable runtime cost and good temporal and spatial generalizability. 展开更多
关键词 gaussian process regression sea surface temperature(SST) machine learning kernel function spatial interpolation
下载PDF
基于GF-GPR的地铁车站基坑变形预测与应用研究
11
作者 张凤明 苏谦 +3 位作者 邓志兴 王呈金 程梦凡 周辰泠 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期563-569,共7页
为解决受噪声影响地铁车站基坑变形预测精度受到限制的问题,文章首先使用高斯滤波(Gaussian filter,GF)算法对监测数据进行降噪处理,再采用高斯过程回归(Gaussian process regression,GPR)算法预测基坑变形,构建一种GF-GPR基坑变形预测... 为解决受噪声影响地铁车站基坑变形预测精度受到限制的问题,文章首先使用高斯滤波(Gaussian filter,GF)算法对监测数据进行降噪处理,再采用高斯过程回归(Gaussian process regression,GPR)算法预测基坑变形,构建一种GF-GPR基坑变形预测模型,并将GF-GPR模型应用于成都某车站地铁基坑的变形预测。结果表明:原始监测数据存在大量噪声,变形不连续,经过GF算法降噪后基坑变形序列变得平稳,同时有用的突变信息仍然被保留。降噪后数据的信噪比(signal-to-noise ratio,SNR)为12.884~17.139,均方误差(mean square error,MSE)为0.430~0.875 mm;所提出的GF-GPR模型的变形预测结果与基坑实际变形趋势一致,GF-GPR模型的预测精度相较于单一GPR算法提高了31%~81%,最大均方根误差降低了0.4367~1.2881 mm。该研究成果可为基坑变形智能预测、施工事故防范提供参考。 展开更多
关键词 地铁车站 组合预测模型 变形预测 基坑水平位移 高斯滤波(GF) 高斯过程回归(gpr)
下载PDF
基于L1-GPR的船舶航向航迹控制方法研究
12
作者 李诗杰 何家伟 +2 位作者 刘佳仑 刘泰序 徐诚祺 《中国舰船研究》 北大核心 2025年第1期278-288,共11页
[目的]智能船舶在航行过程中由于环境干扰的影响,模型参数的不确定性影响会导致船舶运动控制精度不高,为提高船舶控制算法对干扰的自适应能力,提出一种控制方法。[方法]基于L1自适应控制算法和高斯过程回归(GPR),提出一种欠驱动船舶的... [目的]智能船舶在航行过程中由于环境干扰的影响,模型参数的不确定性影响会导致船舶运动控制精度不高,为提高船舶控制算法对干扰的自适应能力,提出一种控制方法。[方法]基于L1自适应控制算法和高斯过程回归(GPR),提出一种欠驱动船舶的航向航迹控制方法,并利用Lyapunov控制函数推导控制律,以证明闭环控制系统一致全局渐近稳定。利用GPR对船舶航行过程中的突发干扰和环境干扰进行建模,并通过与自适应律结合的方式达到快速消除干扰影响的效果。[结果]考虑突发干扰和时变扰动的航向与航迹控制仿真实验结果表明,L1-GPR控制相比传统的L1自适应控制其平均绝对航向误差可减少约9.88%和23.2%,最大绝对航向误差可减少约8.49%和12.1%,能够有效减少环境干扰影响,快速达到稳定状态。[结论]所提航向航迹控制方法能够有效抵抗航行过程中的各种干扰。 展开更多
关键词 船舶 运动控制 模型参考自适应控制 高斯过程回归 航向控制 航迹控制
下载PDF
基于AFSA-GPR的超声测厚温度补偿研究
13
作者 杨冬旭 李祥 贾九红 《仪表技术与传感器》 北大核心 2025年第2期91-95,共5页
使用超声信号对高温承压设备进行壁厚在线监测时,温度的变化会影响壁厚测量结果。针对这一问题,提出一种基于人工鱼群算法优化高斯过程回归的AFSA-GPR温度补偿模型。采用人工鱼群算法对高斯过程超参数进行寻优以提高模型预测精度。在室... 使用超声信号对高温承压设备进行壁厚在线监测时,温度的变化会影响壁厚测量结果。针对这一问题,提出一种基于人工鱼群算法优化高斯过程回归的AFSA-GPR温度补偿模型。采用人工鱼群算法对高斯过程超参数进行寻优以提高模型预测精度。在室温(25℃)至500℃环境下进行超声测厚试验研究,结果表明,该温度补偿模型能显著提升高温环境下壁厚测量精度,其MAE为0.014 8 mm, RMSE为0.022 3 mm。 展开更多
关键词 高温承压设备 超声测厚 温度补偿 高斯过程回归 人工鱼群算法
下载PDF
Nonnegativity-enforced Gaussian process regression 被引量:1
14
作者 Andrew Pensoneault Xiu Yang Xueyu Zhu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第3期182-187,共6页
Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically r... Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically results in a proxy model which is unbounded for all temporal or spacial points,and thus leaves the possibility of taking on infeasible values.We propose an approach to enforce the physical constraints in a probabilistic way under the GP regression framework.In addition,this new approach reduces the variance in the resulting GP model. 展开更多
关键词 gaussian process regression Constrained optimization
下载PDF
基于改进灰狼算法优化GPR模型的动力电池RUL预测方法
15
作者 吴旭志 郭健 《储能科学与技术》 北大核心 2025年第2期728-736,共9页
可靠准确地预测动力电池剩余使用寿命(remaining useful life,RUL)可以缓解用户对里程和安全的焦虑。为了提升RUL预测精度,基于NASA数据集,本工作提出了一种改进的灰狼算法来优化高斯过程回归(Gaussian process regression,GPR)模型。... 可靠准确地预测动力电池剩余使用寿命(remaining useful life,RUL)可以缓解用户对里程和安全的焦虑。为了提升RUL预测精度,基于NASA数据集,本工作提出了一种改进的灰狼算法来优化高斯过程回归(Gaussian process regression,GPR)模型。本工作从以下三方面开展研究。首先,基于电池的充放电数据,提取了五种间接健康因子,包括充电电压饱和间隔(CVSI,HI1)、充电峰值温度间隔(CPTI,HI2)、恒流充电间隔(CCCI,HI3)、放电峰值温度区间(DPTI,HI4)和放电恒流间隔(DCCI,HI5),并采用灰色关联方法分析健康因子和容量的相关性。其次,本工作选取GPR方法作为动力电池RUL预测模型,针对传统模型参数辨识已陷入局部最优问题,提出了基于差分算法改进的灰狼算法,提升模型预测能力。最后,利用NASA数据集对本工作所提方法进行验证。实验结果表明,所提算法预测RUL误差控制在2%以内。 展开更多
关键词 动力电池 剩余使用寿命 高斯过程回归 灰狼算法
下载PDF
Rolling Gaussian Process Regression with Application to Regime Shifts
16
作者 William Menke 《Applied Mathematics》 2022年第11期859-868,共10页
Gaussian Process Regression (GPR) can be applied to the problem of estimating a spatially-varying field on a regular grid, based on noisy observations made at irregular positions. In cases where the field has a weak t... Gaussian Process Regression (GPR) can be applied to the problem of estimating a spatially-varying field on a regular grid, based on noisy observations made at irregular positions. In cases where the field has a weak time dependence, one may desire to estimate the present-time value of the field using a time window of data that rolls forward as new data become available, leading to a sequence of solution updates. We introduce “rolling GPR” (or moving window GPR) and present a procedure for implementing that is more computationally efficient than solving the full GPR problem at each update. Furthermore, regime shifts (sudden large changes in the field) can be detected by monitoring the change in posterior covariance of the predicted data during the updates, and their detrimental effect is mitigated by shortening the time window as the variance rises, and then decreasing it as it falls (but within prior bounds). A set of numerical experiments is provided that demonstrates the viability of the procedure. 展开更多
关键词 Rolling gaussian process regression Regime Shift Moving Window Analysis Woodbury Identity Bordering Method
下载PDF
Multi-output Gaussian Process Regression Model with Combined Kernel Function for Polyester Esterification Processes
17
作者 王恒骞 耿君先 陈磊 《Journal of Donghua University(English Edition)》 CAS 2023年第1期27-33,共7页
In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the ... In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production. 展开更多
关键词 seasonal and trend decomposition using loess(STL) multi-output gaussian process regression combined kernel function polyester esterification process
下载PDF
Determination of reservoir induced earthquake using support vector machine and gaussian process regression
18
作者 Pijush Samui Dookie Kim 《Applied Geophysics》 SCIE CSCD 2013年第2期229-234,237,共7页
The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for... The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. / 展开更多
关键词 Reservoir induced earthquake earthquake magnitude Support Vector Machine gaussian process regression PREDICTION
下载PDF
基于EWT-EVO/CDO-GPR模型的三峡入库月径流预测
19
作者 徐荣华 崔东文 《三峡大学学报(自然科学版)》 北大核心 2025年第2期26-32,共7页
为提高三峡入库月径流预测精度,提出一种基于经验小波变换(EWT)和能量谷优化(EVO)算法、切尔诺贝利灾难优化(CDO)算法优化的高斯过程回归(GPR)预测模型.首先利用EWT将月径流时间序列分解为趋势项、周期项和波动项;然后介绍EVO、CDO算法... 为提高三峡入库月径流预测精度,提出一种基于经验小波变换(EWT)和能量谷优化(EVO)算法、切尔诺贝利灾难优化(CDO)算法优化的高斯过程回归(GPR)预测模型.首先利用EWT将月径流时间序列分解为趋势项、周期项和波动项;然后介绍EVO、CDO算法原理,利用EVO、CDO优化GPR超参数;最后利用优化获得的最佳超参数建立EWT-EVO-GPR、EWT-CDO-GPR模型对月径流各分量进行预测,重构后得到最终预测结果,并构建基于粒子群优化(PSO)算法、遗传算法(GA)优化的EWT-PSO-GPR、EWT-GA-GPR模型,基于支持向量机(SVM)、BP神经网络的EWT-EVO-SVM、EWT-CDO-SVM、EWT-EVO-BP、EWT-CDO-BP模型,基于小波变换(WT)的WT-EVO-GPR、WT-CDO-GPR模型,基于经验模态分解(EMD)的EMD-EVO-GPR、EMD-CDO-GPR模型和EWT-GPR、EVO-GPR、CDO-GPR模型作对比分析,通过三峡2009至2022年入库月径流时序数据对各模型进行验证.结果表明:EWT-EVO-GPR、EWT-CDO-GPR模型预测的平均绝对百分比误差分别为0.689%、0.699%,决定系数均为0.9999,优于其他对比模型,具有更好的预测效果;EWT兼顾WT、EMD优势,可将月径流时序数据分解为更具规律的子分量,显著提升模型性能,分解效果优于WT、EMD;EVO、CDO对GPR超参数的寻优效果优于PSO、GA,通过超参数寻优,显著提升了GPR性能;在相同情形下,GPR预测性能要优于SVM、BP. 展开更多
关键词 月径流预测 高斯过程回归 能量谷优化算法 切尔诺贝利灾难优化算法 经验小波变换 三峡
下载PDF
利用SE-GPR模型对甲醇/柴油混合燃料柴油机性能的预测
20
作者 范金宇 才正 +3 位作者 黄朝霞 杨晨曦 李品芳 黄加亮 《集美大学学报(自然科学版)》 CAS 2024年第2期152-161,共10页
为了对柴油机的经济性和排放参数进行高效、准确的预测,根据4190型船用柴油机实验数据与边界参数,建立AVL-BOOST甲醇/柴油混合燃料柴油机仿真模型;利用模型进行仿真实验,并建立甲醇掺混比、废气再循环(exhaust gas recirculation,EGR)... 为了对柴油机的经济性和排放参数进行高效、准确的预测,根据4190型船用柴油机实验数据与边界参数,建立AVL-BOOST甲醇/柴油混合燃料柴油机仿真模型;利用模型进行仿真实验,并建立甲醇掺混比、废气再循环(exhaust gas recirculation,EGR)率、喷油提前角和进气压力4个控制参数对有效油耗率和NO x排放预测数据集;利用该数据集对5种不同核函数的高斯过程回归(Gaussian process regression,GPR)模型进行训练;最后将最优的平方指数高斯过程回归(squared exponential-Gaussian process regression,SE-GPR)模型、AVL-BOOST仿真数据和柴油机实验数据进行对比。结果表明:在数据量为180组时,SE-GPR模型对有效油耗率和NO x排放均取得拟合关联度99%以上,均方根误差(root mean square error,RMSE)分别为1.859,0.3445,平均绝对误差(mean absolute error,MAE)分别为0.954,0.2489;并且,相较于AVL-BOOST仿真实验,SE-GPR模型对实验数据具有更好的拟合性。 展开更多
关键词 船用柴油机 甲醇 高斯过程回归 平方指数核函数 性能预测
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部