Organoboron compounds are widely used in synthetic chemistry,pharmaceutical chemistry and material chemistry.Among various organoboron compounds,benzylboronic esters are unique and highly reactive,making them suitable...Organoboron compounds are widely used in synthetic chemistry,pharmaceutical chemistry and material chemistry.Among various organoboron compounds,benzylboronic esters are unique and highly reactive,making them suitable benzylation reagents.At present,the synthetic methods for the syntheses of benzylboronic esters are still insufficient to meet their demands.It is necessary to develop novel and practical methods for their preparation.In this work,a novel copper‐catalyzed deoxygenative gem‐hydroborylation of aromatic aldehydes and ketones has been developed.This direct and operationally simple protocol provides an effective approach for the synthesis of a variety of primary and secondary benzylboronates,in which broad functional group tolerance was presented.Widely available B2pin2(pin=pinacol)was used as the boron source and alcoholic proton was applied as the hydride source.展开更多
Gambogic acid(GA) is a natural substance with a good antitumor effect, but it is too lipophilic to be metabolized and excreted, thus accumulating in the body. Gemcitabine(GEM), one of the first-line antitumor drugs, h...Gambogic acid(GA) is a natural substance with a good antitumor effect, but it is too lipophilic to be metabolized and excreted, thus accumulating in the body. Gemcitabine(GEM), one of the first-line antitumor drugs, has high hydrophilicity, which greatly shortens its half-life in vivo. We previously reported a compound named N-gamboyl gemcitabine(GAG), derived from the condensation of GEM and GA, whose hydrophilicity is better than GA and stability is better than GEM. Here, the antitumor performance of GAG was investigated for the first time by using several common tumor cell lines as tumor models. The results of in vitro study showed that GAG significantly inhibited the proliferation and migration of the tumor cells. The IC50 values of GAG for the tumor cells were lower than those of GEM and GA. The present study suggests that GAG has a promising potential to be developed into a broad-spectrum antitumor drug.展开更多
文摘Organoboron compounds are widely used in synthetic chemistry,pharmaceutical chemistry and material chemistry.Among various organoboron compounds,benzylboronic esters are unique and highly reactive,making them suitable benzylation reagents.At present,the synthetic methods for the syntheses of benzylboronic esters are still insufficient to meet their demands.It is necessary to develop novel and practical methods for their preparation.In this work,a novel copper‐catalyzed deoxygenative gem‐hydroborylation of aromatic aldehydes and ketones has been developed.This direct and operationally simple protocol provides an effective approach for the synthesis of a variety of primary and secondary benzylboronates,in which broad functional group tolerance was presented.Widely available B2pin2(pin=pinacol)was used as the boron source and alcoholic proton was applied as the hydride source.
基金Science&Technology Commission of Shanghai MunicipalityChina (No.20DZ2254900)+3 种基金Municipal Public Welfare Research Project from JiaxingZhejiang ProvinceChina (No.2022AY10001)Open Project Program of Jiaxing Key Laboratory of Virus-Related Infectious Diseases。
文摘Gambogic acid(GA) is a natural substance with a good antitumor effect, but it is too lipophilic to be metabolized and excreted, thus accumulating in the body. Gemcitabine(GEM), one of the first-line antitumor drugs, has high hydrophilicity, which greatly shortens its half-life in vivo. We previously reported a compound named N-gamboyl gemcitabine(GAG), derived from the condensation of GEM and GA, whose hydrophilicity is better than GA and stability is better than GEM. Here, the antitumor performance of GAG was investigated for the first time by using several common tumor cell lines as tumor models. The results of in vitro study showed that GAG significantly inhibited the proliferation and migration of the tumor cells. The IC50 values of GAG for the tumor cells were lower than those of GEM and GA. The present study suggests that GAG has a promising potential to be developed into a broad-spectrum antitumor drug.