Gene pyramiding has been successfully practiced in plant breeding for developing new breeds or lines in which favorable genes from several different lines were integrated. But it has not been used in animal breeding, ...Gene pyramiding has been successfully practiced in plant breeding for developing new breeds or lines in which favorable genes from several different lines were integrated. But it has not been used in animal breeding, and some theoretical investigation and simulation analysis with respect to its strategies, feasibility and efficiency are needed before it can be implemented in animals. In this study, we used four different pure lines of Drosophila melanogaster, each of which is homozygous at a specific mutant gene with a visible effect on phenotype, to simulate the gene pyramiding process and analyze the duration and population size required in different pyramiding strategies. We finally got the ideal individuals, which are homozygous at the four target genes simultaneously. This study demonstrates that gene pyramiding is feasible in animal breeding and the interaction between genes may affect the final results.展开更多
The feasibility of molecule markers' application in gene pyramiding has been proved,and obvious progresses in crop breeding have been made till now.Furthermore,different QTLs or molecular markers linked tightly to yi...The feasibility of molecule markers' application in gene pyramiding has been proved,and obvious progresses in crop breeding have been made till now.Furthermore,different QTLs or molecular markers linked tightly to yield,quality or resistance may be used for marker assisted selection.MAS will be applied widely in crop breeding due to the development of more gene-based markers and efficient quantitative trait locus(QTL) as well as lower cost marking systems.展开更多
This gene pyramiding strategy is based on the idea of efficiently pyramiding genes of interest by crosses and selection to obtain a population with favorable alleles from different breeds or lines, which is called an ...This gene pyramiding strategy is based on the idea of efficiently pyramiding genes of interest by crosses and selection to obtain a population with favorable alleles from different breeds or lines, which is called an ideal population. We investigate impacts of some factors on the pyramiding efficiencies by simulation. These factors include selection strategies (the breeding value selection, the molecular scores selection and the index selection), proportion selected (2, 10 and 20%), recombination rates between adjacent target genes (0.1, 0.3 and 0.5) and different mating types (the random mating and the positive assortative mating avoiding sib mating). The results show that: (1) The more recombination rate and the lower proportion male selected, the better pyramiding efficiency; (2) the ideal population is obtained via various selection strategies, while different selection strategies are suitable for different breeding objectives. From the perspective of pyramiding target genes merely, the molecular scores selection is the best one, for the purpose of pyramiding target genes and recovering genetic background of the target trait, the index selection is the best one, while from the saving cost point of view, the breeding value selection is the best one; (3) the positive assortative mating is more efficient for gene pyramiding compared with the random mating in the terms of the number of generations of intercross for getting the ideal population.展开更多
Haihui 818 is a new restorer line by cross breeding with Hua 23 S and Huahui 8131.Good plant type,high tillering ability,fine grain quality,strong restoring ability and high yield were shown in hybrid production.After...Haihui 818 is a new restorer line by cross breeding with Hua 23 S and Huahui 8131.Good plant type,high tillering ability,fine grain quality,strong restoring ability and high yield were shown in hybrid production.After artificial inoculation and field stress and molecular market-assisted selection,the results showed that rice-blast resistance genes Pi1,BB resistance genes Xa7,and brown planthopper resistance genes Bph3,Bph14 and Bph15 were pyramided together.Among its hybrids,Bo II You 818(Bo II A/Haihui 818)was approved for commercial production by Hainan Provincial Crop Variety Approval Committee in 2015.展开更多
Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blastresistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assistedbackcross breeding. Impro...Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blastresistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assistedbackcross breeding. Improved Samba Mahsuri (possessing Xa21 and xa13) and NLR145 (possessingPi54) were used as donor parents. Marker-assisted backcrossing was continued till BC2 generationwherein PCR based functional markers specific for the resistance genes were used for foregroundselection and a set of parental polymorphic microsatellite markers were used for background selectionat each stage of backcrossing. Selected BC2F1 plants from both crosses, having the highest recoveriesof MTU1010 genome (90% and 92%, respectively), were intercrossed to obtain intercross F1 (ICF1) plants,which were then selfed to generate 880 ICF2 plants possessing different combinations of the BB andblast resistance genes. Among the ICF2 plants, seven triple homozygous plants (xa13xa13Xa21Xa21Pi54Pi54)with recurrent parent genome recovery ranging from 82% to 92% were identified. All the seven ICF2plants showed high resistance against the bacterial blight disease with a lesion lengths of only 0.53–2.28 cm, 1%–5% disease leaf areas and disease scoring values of ‘1’ or ‘3’. The seven ICF2 plants wereselfed to generate ICF3, which were then screened for blast resistance, and all were observed to behighly resistant to the diseases. Several ICF3 lines possessing high level of resistance against BB andblast, coupled with yield, grain quality and plant type on par with MTU1010 were identified and advanced forfurther selection and evaluation.展开更多
Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality.However,the yield of Varalu is substantially low since it is being affected by reproducti...Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality.However,the yield of Varalu is substantially low since it is being affected by reproductive drought stress along with the blast disease.The genetic improvement of Varalu was done by introgressing a major yield QTL,qDTY_(12.1),along with two major blast resistance genes i.e.Pi54 and Pi1 through marker-assisted backcross breeding.Both traits were transferred till BC_(2) generation and intercrossing was followed to pyramid the two traits.Stringent foreground selection was carried out using linked markers as well as peak markers(RM28099,RM28130,RM511 and RM28163)for the targeted QTL(qDTY_(12.1)),RM206 for Pi54 and RM224 for Pi1.Extensive background selection was done using genome-wide SSR markers.Six best lines(MSM-36,MSM-49,MSM-53,MSM-57,MSM-60 and MSM-63)having qDTY_(12.1) and two blast resistance genes in homozygous condition with recurrent parent genome of 95.0%-96.5% having minimal linkage drag of about 0.1 to 0.7 Mb were identified.These lines showed yield advantage under drought stress as well as irrigated conditions.MSM-36 showed better performance in the national coordinated trials conducted across India,which indicated that improved lines of Varalu expected to replace Varalu and may have an important role in sustaining rice production.The present study demonstrated the successful marker-assisted pyramiding strategy for introgression of genes/QTLs conferring biotic stress resistance and yield under abiotic stress in rice.展开更多
The introduction of Bacillus thuringiensis(Bt)cotton has reduced the burden of pests without harming the environment and human health.However,the efficacy of Bt cotton has decreased due to field-evolved resistance in ...The introduction of Bacillus thuringiensis(Bt)cotton has reduced the burden of pests without harming the environment and human health.However,the efficacy of Bt cotton has decreased due to field-evolved resistance in insect pests over time.In this review,we have discussed various factors that facilitate the evolution of resistance in cotton pests.Currently,different strategies like pyramided cotton expressing two or more distinct Bt toxin genes,refuge strategy,releasing of sterile insects,and gene silencing by RNAi are being used to control insect pests.Pyramided cotton has shown resistance against different cotton pests.The multiple genes pyramiding and silencing(MGPS)approach has been proposed for the management of cotton pests.The genome information of cotton pests is necessary for the development of MGPS-based cotton.The expression cassettes against various essential genes involved in defense,detoxification,digestion,and development of cotton pests will successfully obtain favorable agronomic characters for crop protection and production.The MGPS involves the construction of transformable artificial chromosomes,that can express multiple distinct Bt toxins and RNAi to knockdown various essential target genes to control pests.The evolution of resistance in cotton pests will be delayed or blocked by the synergistic action of high dose of Bt toxins and RNAi as well as compliance of refuge requirement.展开更多
Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that...Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that maize inbred line Qi319 is highly resistant to SCR but susceptible to MSR-2,while inbred line 1145 is highly resistant to MSR-2 but susceptible to SCR.The SCR resistant gene(RppQ) in Qi319 and MSR-2 resistant gene(Rpi1) in 1145 have been mapped on chromosome 10 and 4 respectively.In this research,through marker-assisted selection(MAS) with the molecular markers,bnlg1937 tightly linked to Rpi1 and phi041 tightly linked to RppQ,pyramid breeding of the two kinds of disease resistant genes were carried out from the year of 2003 to 2007.Two homozygotic inbred lines of F5 generation,DR94-1-1-1 and DR36-1-1-1 were identified.MAS result suggested DR94-1-1-1 and DR36-1-1-1 contained the two resistance genes RppQ and Rpi1.Field inoculation tests confirmed their high resistance to the two diseases.In addition,field investigation indicated that the two selected inbred lines,particularly DR94-1-1-1,had excellent agronomic traits such as plant height,ear height and yield-relating traits including ear length,ear diameter,ear weight,kernels per ear,kernels per row and kernel weight per ear.The two selected inbred lines DR94-1-1-1 and DR36-1-1-1 can either be directly developed into commercial variety or used as immediate donors of SCR and MSR resistance breeding programs in maize.展开更多
Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the e...Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the expression of Bacillus thuringiensis(Bt)insecticidal protein in cotton has significantly reduced the burden of pest without compromising environmental or human health.After the introduction of transgenic cotton,the cultivated area expanded to 22 million hectares,with a 64% increase in adoption by farmers worldwide.Currently,Bt cotton accounts for 93% of the cultivated cotton area in India.However,extensive use of Bt cotton has accelerated resistance development in pests like the pink bollworm.Furthermore,the overreliance on Bt cotton has reduced the use of broad-spectrum pesticides,favouring the emergence of secondary pests with significant challenges.This emphasizes the urgent necessity for developing novel pest management strategies.The high-dose and refuge strategy was initially effective for managing pest resistance in Bt cotton,but its implementation in India faced challenges due to misunderstandings about the use of non-Bt refuge crops.Although gene pyramiding was introduced as a solution,combining mono toxin also led to instances of cross-resistance.Therefore,there is a need for further exploration of biotechnological approaches to manage insect resistance in Bt cotton.Advanced biotechnological strategies,such as sterile insect release,RNA interference(RNAi)-mediated gene silencing,stacking Bt with RNAi,and genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR-Cas),offer promising tools for identifying and managing resistance genes in insects.Additionally,CRISPR-mediated gene drives and the development of novel biopesticides present potential avenues for effective pest management in cotton cultivation.These innovative approaches could significantly enhance the sustainability and efficacy of pest resistance management in Bt cotton.展开更多
The production and productivity of rice has been challenged due to biotic and abiotic factors.Bacterial blight(BB)disease,caused by Xanthomonas oryzae pv.oryzae,is one of the important biotic stress factors,which redu...The production and productivity of rice has been challenged due to biotic and abiotic factors.Bacterial blight(BB)disease,caused by Xanthomonas oryzae pv.oryzae,is one of the important biotic stress factors,which reduces rice production by 20%-50%.The deployment of host plant resistance is the most preferred strategy for management of BB disease,and breeding disease resistant varieties remains a very economical and effective option.However,it is difficult to develop rice varieties with durable broad-spectrum resistance against BB using conventional approaches alone.Modern biotechnological tools,particularly the deployment of molecular markers,have facilitated the cloning,characterization and introgression of BB resistance genes into elite varieties.At least 46 BB resistance genes have been identified and mapped from diverse sources till date.Among these,11 genes have been cloned and characterized.Marker-assisted breeding remains the most efficient approach to improve BB resistance by introducing two or more resistance genes into target varieties.Among the identified genes,xa5,xa13 and Xa21 are being widely used in marker-assisted breeding and more than 70 rice varieties or hybrid rice parental lines have been improved for their BB resistance alone or in combination with genes/QTLs conferring tolerance to other stress.We review the developments related to identification and utilization of various resistance genes to develop BB resistant rice varieties through marker-assisted breeding.展开更多
Because high temperatures impair rice production,it is desirable to elucidate the regulatory mechanisms involved in rice response to heat stress.The objectives of this study were to identify candidate genes and charac...Because high temperatures impair rice production,it is desirable to elucidate the regulatory mechanisms involved in rice response to heat stress.The objectives of this study were to identify candidate genes and characterize their response patterns during rice adaptation to high temperatures at the seedling stage.Ten heat-associated quantitative-trait loci were identified in a genome-wide association study.Comparison of transcript abundances in heat-sensitive and heat-tolerant rice pools under heat stress revealed approximately 400 differentially expressed genes.The expression of genes from heatsensitive accessions changed more than those from heat-tolerant accessions under heat stress.Alternative splicing(AS)events responded to heat stress in rice.The types of AS variants significant different between the heat-sensitive and heat-tolerant accessions.Expression patterns differing between the heat-sensitive and heat-tolerant accessions were identified for genes known to be involved in heat stress.We identified eleven genes associated with rice heat stress response.These genes could be pyramided to breed heat-tolerant rice accessions.展开更多
Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow i...Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow in the last decades. Although great progress in rice genomics and molecular biology has been achieved, the effect of such technological innovations on rice breeding is far small. Marker-assisted selection (MAS) for a few target quantitative trait loci (QTLs) has significant effects in improving qualitative traits, such as disease resistance. The success of MAS has therefore motivated breeders to identify and use major QTLs for yield and yield component traits. In this review, we summarized the recent methods in QTL identification, including novel statistical methods for linkage and association mapping, special population types, and whole-genome sequencing. We reviewed the successful application of marker-assisted gene introgression and gene pyramiding to improve grain yield and discussed the design of efficient MAS schemes to further increase the success rate of breeding programs. The use of well-characterized major QTLs through introgression and gene pyramiding is proven effective in improving grain yield, particularly yield under abiotic stress. Major QTLs that are stable across genetic background and growing environments are often found in less adapted germplasms, such as landraces and wild relatives. Advanced backcross QTL analysis and introgression lines, which integrate QTL discovery and utilization, are important methods for exploiting major QTLs contained in such germplasms. Next-generation sequencing substantially increases mapping resolution and accelerates the identification of casual genes underlying major QTLs. Practical guidelines derived from theoretical and empirical studies are given to guide the design of efficient marker-assisted gene introgression and pyramiding schemes.展开更多
Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assist...Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assisted selection technology. Four homologous restorer lines were obtained through testing the R target genes with molecular markers and analyzing parental genetic background. Inoculation of the four lines and their hybrids with the specific strains of Xanthomonas oryzae pv. oryzae, P1, P6 and seven representative strains of Chinese pathotype, C Ⅰ -CⅦ, showed that all of the four lines and their hybrids were highly resistant and presented broad resistance-spectrum to BB. The hybrids of G46A / R207-2 displayed good agronomic characters and high yield potential, and R207-2 was named Shuhui 207.展开更多
The integrated use of molecular marker-assisted selection (MAS) and anther culture has potential to significantly increase efficiency in plant breeding;however, reports on this kind of practical use are very limited. ...The integrated use of molecular marker-assisted selection (MAS) and anther culture has potential to significantly increase efficiency in plant breeding;however, reports on this kind of practical use are very limited. In the present study, we report the development of cytoplasmic male sterile (CMS) maintainers with aroma, disease resistance and red-brown hulls, as an example of integration of MAS and anther culture in rice breeding. A high-resolution melting (HRM)-based functional molecular marker was developed for the red-brown hull trait caused by a unique mutation (rbh1) in OsCAD2. Functional molecular markers for genes of rice blast resistance (Pi2), aroma (fgr) and red-brown hull (rbh1) were used for precise genotyping of individual plants in the BC1 and BC2F2 populations derived from a cross between CMS maintainers Huaxiang B (pi2–/rbh1–/fgr–) and Rong 3B (Pi2+/RBH1+/Fgr+). A total of 89 doubled haploid (DH) lines were generated from selected BC2F2 plants (Pi2+/rbh1–/fgr–) by anther culture. Seven DH lines were subsequently selected as the potential new CMS maintainers based on their overall performance and high resistance to blast. Our study demonstrated that integration of MAS and anther culture significantly accelerated the development of CMS maintainers with multiple stacked genes.展开更多
Genetic improvement is one of the most effective strategies to prevent rice from blast and bacterial blight (BB) diseases, the two most prevalent diseases jeopardizing rice production. Rice hybrids with dural resist...Genetic improvement is one of the most effective strategies to prevent rice from blast and bacterial blight (BB) diseases, the two most prevalent diseases jeopardizing rice production. Rice hybrids with dural resistance to blast and BB are needed for sustainable production of food. An incomplete diallele design resulted in 25 crosses between five blast and five BB resistant germplasm accessions. Only one pair of parents, DH146 ×TM487, showed polymorphism for all the markers to identify one blast resistance gene Pi25 and three BB resistance genes, Xa21, xa13 and xa5, thus it was used in the marker-assisted selection (MAS). F2 individuals of DH146× TM487 were genotyped using flanking markers of RM3330 and sequence tagged site (STS) marker SA7 for Pi25. The resistant F2 plants with Pi25 were used for pyramiding BB resistance genes Xa21, xa13 and xa5 identified by the markers pTA248, RM264 and RM153, respectively in subsequent generations. Finally, after selection for agronomic traits and restoration ability among 12 pyramided lines, we acquired an elite restorer line, R8012 including all four target genes (Pi25+Xa21+xa13+xa5). Hybrid Zhong 9NR8012 derived from the selected line showed stronger resistance to blast and BB, and higher grain yield than the commercial checks uniformally in experimental plots, 2007 state-wide yield trial and 2008 nation-wide yield trial. This study provides a paradigmatic example to show that MAS is a practically feasible tool in effectively pyramiding multiple resistance genes. The resultant restoring line and its hybrid would play an important role in securing rice production in China.展开更多
基金supported by the National High-Tech Research and Development Program of China (863 Project) (No.2006AA10Z1D7)
文摘Gene pyramiding has been successfully practiced in plant breeding for developing new breeds or lines in which favorable genes from several different lines were integrated. But it has not been used in animal breeding, and some theoretical investigation and simulation analysis with respect to its strategies, feasibility and efficiency are needed before it can be implemented in animals. In this study, we used four different pure lines of Drosophila melanogaster, each of which is homozygous at a specific mutant gene with a visible effect on phenotype, to simulate the gene pyramiding process and analyze the duration and population size required in different pyramiding strategies. We finally got the ideal individuals, which are homozygous at the four target genes simultaneously. This study demonstrates that gene pyramiding is feasible in animal breeding and the interaction between genes may affect the final results.
基金Supported by National 863 Plan (2006AA100108-4-9)
文摘The feasibility of molecule markers' application in gene pyramiding has been proved,and obvious progresses in crop breeding have been made till now.Furthermore,different QTLs or molecular markers linked tightly to yield,quality or resistance may be used for marker assisted selection.MAS will be applied widely in crop breeding due to the development of more gene-based markers and efficient quantitative trait locus(QTL) as well as lower cost marking systems.
基金supported by the National Major Special Project of China on New Varieties Cultivation for Transgenic Organisms (2009ZX08009-146B)by the National Non-profit Institute Research Grant,China (2012cj-2)
文摘This gene pyramiding strategy is based on the idea of efficiently pyramiding genes of interest by crosses and selection to obtain a population with favorable alleles from different breeds or lines, which is called an ideal population. We investigate impacts of some factors on the pyramiding efficiencies by simulation. These factors include selection strategies (the breeding value selection, the molecular scores selection and the index selection), proportion selected (2, 10 and 20%), recombination rates between adjacent target genes (0.1, 0.3 and 0.5) and different mating types (the random mating and the positive assortative mating avoiding sib mating). The results show that: (1) The more recombination rate and the lower proportion male selected, the better pyramiding efficiency; (2) the ideal population is obtained via various selection strategies, while different selection strategies are suitable for different breeding objectives. From the perspective of pyramiding target genes merely, the molecular scores selection is the best one, for the purpose of pyramiding target genes and recovering genetic background of the target trait, the index selection is the best one, while from the saving cost point of view, the breeding value selection is the best one; (3) the positive assortative mating is more efficient for gene pyramiding compared with the random mating in the terms of the number of generations of intercross for getting the ideal population.
基金Earmarked Fund for China Agriculture Research System(CARS-01-89)Crop Genetics and Breeding-Tropical Characteristic Rice Genetic Breeding(JBKYYNF-2020-03)Identification and Development of Tropical Rice Germplasm Resources in Southeast Asia(KJCX-2020-11)。
文摘Haihui 818 is a new restorer line by cross breeding with Hua 23 S and Huahui 8131.Good plant type,high tillering ability,fine grain quality,strong restoring ability and high yield were shown in hybrid production.After artificial inoculation and field stress and molecular market-assisted selection,the results showed that rice-blast resistance genes Pi1,BB resistance genes Xa7,and brown planthopper resistance genes Bph3,Bph14 and Bph15 were pyramided together.Among its hybrids,Bo II You 818(Bo II A/Haihui 818)was approved for commercial production by Hainan Provincial Crop Variety Approval Committee in 2015.
基金supported by the Department of Biotechnology(DBT),Government of India(Grant No.BT/PR11705/AGR/02/646/2008)
文摘Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blastresistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assistedbackcross breeding. Improved Samba Mahsuri (possessing Xa21 and xa13) and NLR145 (possessingPi54) were used as donor parents. Marker-assisted backcrossing was continued till BC2 generationwherein PCR based functional markers specific for the resistance genes were used for foregroundselection and a set of parental polymorphic microsatellite markers were used for background selectionat each stage of backcrossing. Selected BC2F1 plants from both crosses, having the highest recoveriesof MTU1010 genome (90% and 92%, respectively), were intercrossed to obtain intercross F1 (ICF1) plants,which were then selfed to generate 880 ICF2 plants possessing different combinations of the BB andblast resistance genes. Among the ICF2 plants, seven triple homozygous plants (xa13xa13Xa21Xa21Pi54Pi54)with recurrent parent genome recovery ranging from 82% to 92% were identified. All the seven ICF2plants showed high resistance against the bacterial blight disease with a lesion lengths of only 0.53–2.28 cm, 1%–5% disease leaf areas and disease scoring values of ‘1’ or ‘3’. The seven ICF2 plants wereselfed to generate ICF3, which were then screened for blast resistance, and all were observed to behighly resistant to the diseases. Several ICF3 lines possessing high level of resistance against BB andblast, coupled with yield, grain quality and plant type on par with MTU1010 were identified and advanced forfurther selection and evaluation.
文摘Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality.However,the yield of Varalu is substantially low since it is being affected by reproductive drought stress along with the blast disease.The genetic improvement of Varalu was done by introgressing a major yield QTL,qDTY_(12.1),along with two major blast resistance genes i.e.Pi54 and Pi1 through marker-assisted backcross breeding.Both traits were transferred till BC_(2) generation and intercrossing was followed to pyramid the two traits.Stringent foreground selection was carried out using linked markers as well as peak markers(RM28099,RM28130,RM511 and RM28163)for the targeted QTL(qDTY_(12.1)),RM206 for Pi54 and RM224 for Pi1.Extensive background selection was done using genome-wide SSR markers.Six best lines(MSM-36,MSM-49,MSM-53,MSM-57,MSM-60 and MSM-63)having qDTY_(12.1) and two blast resistance genes in homozygous condition with recurrent parent genome of 95.0%-96.5% having minimal linkage drag of about 0.1 to 0.7 Mb were identified.These lines showed yield advantage under drought stress as well as irrigated conditions.MSM-36 showed better performance in the national coordinated trials conducted across India,which indicated that improved lines of Varalu expected to replace Varalu and may have an important role in sustaining rice production.The present study demonstrated the successful marker-assisted pyramiding strategy for introgression of genes/QTLs conferring biotic stress resistance and yield under abiotic stress in rice.
基金This work was supported by the Genetically Modified Organisms Breeding Major Project of China(2019ZX08010004–004)the National Natural Science Foundation of China(31901579).
文摘The introduction of Bacillus thuringiensis(Bt)cotton has reduced the burden of pests without harming the environment and human health.However,the efficacy of Bt cotton has decreased due to field-evolved resistance in insect pests over time.In this review,we have discussed various factors that facilitate the evolution of resistance in cotton pests.Currently,different strategies like pyramided cotton expressing two or more distinct Bt toxin genes,refuge strategy,releasing of sterile insects,and gene silencing by RNAi are being used to control insect pests.Pyramided cotton has shown resistance against different cotton pests.The multiple genes pyramiding and silencing(MGPS)approach has been proposed for the management of cotton pests.The genome information of cotton pests is necessary for the development of MGPS-based cotton.The expression cassettes against various essential genes involved in defense,detoxification,digestion,and development of cotton pests will successfully obtain favorable agronomic characters for crop protection and production.The MGPS involves the construction of transformable artificial chromosomes,that can express multiple distinct Bt toxins and RNAi to knockdown various essential target genes to control pests.The evolution of resistance in cotton pests will be delayed or blocked by the synergistic action of high dose of Bt toxins and RNAi as well as compliance of refuge requirement.
文摘Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that maize inbred line Qi319 is highly resistant to SCR but susceptible to MSR-2,while inbred line 1145 is highly resistant to MSR-2 but susceptible to SCR.The SCR resistant gene(RppQ) in Qi319 and MSR-2 resistant gene(Rpi1) in 1145 have been mapped on chromosome 10 and 4 respectively.In this research,through marker-assisted selection(MAS) with the molecular markers,bnlg1937 tightly linked to Rpi1 and phi041 tightly linked to RppQ,pyramid breeding of the two kinds of disease resistant genes were carried out from the year of 2003 to 2007.Two homozygotic inbred lines of F5 generation,DR94-1-1-1 and DR36-1-1-1 were identified.MAS result suggested DR94-1-1-1 and DR36-1-1-1 contained the two resistance genes RppQ and Rpi1.Field inoculation tests confirmed their high resistance to the two diseases.In addition,field investigation indicated that the two selected inbred lines,particularly DR94-1-1-1,had excellent agronomic traits such as plant height,ear height and yield-relating traits including ear length,ear diameter,ear weight,kernels per ear,kernels per row and kernel weight per ear.The two selected inbred lines DR94-1-1-1 and DR36-1-1-1 can either be directly developed into commercial variety or used as immediate donors of SCR and MSR resistance breeding programs in maize.
文摘Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the expression of Bacillus thuringiensis(Bt)insecticidal protein in cotton has significantly reduced the burden of pest without compromising environmental or human health.After the introduction of transgenic cotton,the cultivated area expanded to 22 million hectares,with a 64% increase in adoption by farmers worldwide.Currently,Bt cotton accounts for 93% of the cultivated cotton area in India.However,extensive use of Bt cotton has accelerated resistance development in pests like the pink bollworm.Furthermore,the overreliance on Bt cotton has reduced the use of broad-spectrum pesticides,favouring the emergence of secondary pests with significant challenges.This emphasizes the urgent necessity for developing novel pest management strategies.The high-dose and refuge strategy was initially effective for managing pest resistance in Bt cotton,but its implementation in India faced challenges due to misunderstandings about the use of non-Bt refuge crops.Although gene pyramiding was introduced as a solution,combining mono toxin also led to instances of cross-resistance.Therefore,there is a need for further exploration of biotechnological approaches to manage insect resistance in Bt cotton.Advanced biotechnological strategies,such as sterile insect release,RNA interference(RNAi)-mediated gene silencing,stacking Bt with RNAi,and genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR-Cas),offer promising tools for identifying and managing resistance genes in insects.Additionally,CRISPR-mediated gene drives and the development of novel biopesticides present potential avenues for effective pest management in cotton cultivation.These innovative approaches could significantly enhance the sustainability and efficacy of pest resistance management in Bt cotton.
文摘The production and productivity of rice has been challenged due to biotic and abiotic factors.Bacterial blight(BB)disease,caused by Xanthomonas oryzae pv.oryzae,is one of the important biotic stress factors,which reduces rice production by 20%-50%.The deployment of host plant resistance is the most preferred strategy for management of BB disease,and breeding disease resistant varieties remains a very economical and effective option.However,it is difficult to develop rice varieties with durable broad-spectrum resistance against BB using conventional approaches alone.Modern biotechnological tools,particularly the deployment of molecular markers,have facilitated the cloning,characterization and introgression of BB resistance genes into elite varieties.At least 46 BB resistance genes have been identified and mapped from diverse sources till date.Among these,11 genes have been cloned and characterized.Marker-assisted breeding remains the most efficient approach to improve BB resistance by introducing two or more resistance genes into target varieties.Among the identified genes,xa5,xa13 and Xa21 are being widely used in marker-assisted breeding and more than 70 rice varieties or hybrid rice parental lines have been improved for their BB resistance alone or in combination with genes/QTLs conferring tolerance to other stress.We review the developments related to identification and utilization of various resistance genes to develop BB resistant rice varieties through marker-assisted breeding.
基金supported by the Agricultural Science and Technology Innovation Program,Shenzhen Science and Technology Program(KQTD2016113010482651)Projects Subsidized by Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District(RC201901-05)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2019A1515110557)the National Natural Science Foundation of China(31771887)Genome-wide Association Study of High Nitrogen Use Efficiency Related Traits in Rice and Breeding Application(2020-KYYWF-0237)。
文摘Because high temperatures impair rice production,it is desirable to elucidate the regulatory mechanisms involved in rice response to heat stress.The objectives of this study were to identify candidate genes and characterize their response patterns during rice adaptation to high temperatures at the seedling stage.Ten heat-associated quantitative-trait loci were identified in a genome-wide association study.Comparison of transcript abundances in heat-sensitive and heat-tolerant rice pools under heat stress revealed approximately 400 differentially expressed genes.The expression of genes from heatsensitive accessions changed more than those from heat-tolerant accessions under heat stress.Alternative splicing(AS)events responded to heat stress in rice.The types of AS variants significant different between the heat-sensitive and heat-tolerant accessions.Expression patterns differing between the heat-sensitive and heat-tolerant accessions were identified for genes known to be involved in heat stress.We identified eleven genes associated with rice heat stress response.These genes could be pyramided to breed heat-tolerant rice accessions.
基金supported by the National Natural Science Foundation of China(Grant Nos.31221004 and 31271700)National Basic Research Program of China(Grant No.2013CBA01405)the Chinese 863 Program(Grant No.2012AA10A302)
文摘Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow in the last decades. Although great progress in rice genomics and molecular biology has been achieved, the effect of such technological innovations on rice breeding is far small. Marker-assisted selection (MAS) for a few target quantitative trait loci (QTLs) has significant effects in improving qualitative traits, such as disease resistance. The success of MAS has therefore motivated breeders to identify and use major QTLs for yield and yield component traits. In this review, we summarized the recent methods in QTL identification, including novel statistical methods for linkage and association mapping, special population types, and whole-genome sequencing. We reviewed the successful application of marker-assisted gene introgression and gene pyramiding to improve grain yield and discussed the design of efficient MAS schemes to further increase the success rate of breeding programs. The use of well-characterized major QTLs through introgression and gene pyramiding is proven effective in improving grain yield, particularly yield under abiotic stress. Major QTLs that are stable across genetic background and growing environments are often found in less adapted germplasms, such as landraces and wild relatives. Advanced backcross QTL analysis and introgression lines, which integrate QTL discovery and utilization, are important methods for exploiting major QTLs contained in such germplasms. Next-generation sequencing substantially increases mapping resolution and accelerates the identification of casual genes underlying major QTLs. Practical guidelines derived from theoretical and empirical studies are given to guide the design of efficient marker-assisted gene introgression and pyramiding schemes.
文摘Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assisted selection technology. Four homologous restorer lines were obtained through testing the R target genes with molecular markers and analyzing parental genetic background. Inoculation of the four lines and their hybrids with the specific strains of Xanthomonas oryzae pv. oryzae, P1, P6 and seven representative strains of Chinese pathotype, C Ⅰ -CⅦ, showed that all of the four lines and their hybrids were highly resistant and presented broad resistance-spectrum to BB. The hybrids of G46A / R207-2 displayed good agronomic characters and high yield potential, and R207-2 was named Shuhui 207.
基金This research was supported by the National Key Technology Research and Development Program of China(2016YFD0102102)the Sichuan Innovation Ability Rising Government Financial Project,China(2016ZYPZ-001)the Sichuan Rice Breeding Project for Tackling Key Problems,China(2016NYZ0028-1-1).
文摘The integrated use of molecular marker-assisted selection (MAS) and anther culture has potential to significantly increase efficiency in plant breeding;however, reports on this kind of practical use are very limited. In the present study, we report the development of cytoplasmic male sterile (CMS) maintainers with aroma, disease resistance and red-brown hulls, as an example of integration of MAS and anther culture in rice breeding. A high-resolution melting (HRM)-based functional molecular marker was developed for the red-brown hull trait caused by a unique mutation (rbh1) in OsCAD2. Functional molecular markers for genes of rice blast resistance (Pi2), aroma (fgr) and red-brown hull (rbh1) were used for precise genotyping of individual plants in the BC1 and BC2F2 populations derived from a cross between CMS maintainers Huaxiang B (pi2–/rbh1–/fgr–) and Rong 3B (Pi2+/RBH1+/Fgr+). A total of 89 doubled haploid (DH) lines were generated from selected BC2F2 plants (Pi2+/rbh1–/fgr–) by anther culture. Seven DH lines were subsequently selected as the potential new CMS maintainers based on their overall performance and high resistance to blast. Our study demonstrated that integration of MAS and anther culture significantly accelerated the development of CMS maintainers with multiple stacked genes.
基金supported in part by the National Natural Science Foundation of China (Grant No. 30623006,No. 31101209)the National High Technology Research and Development Program of China (Grant No.2006AA10Z1E8)the Program of Introducing International Advanced Agricultural Science and Technologies (948 Program) of Ministry of Agricultureof China (Grant No. 2006-G51)
文摘Genetic improvement is one of the most effective strategies to prevent rice from blast and bacterial blight (BB) diseases, the two most prevalent diseases jeopardizing rice production. Rice hybrids with dural resistance to blast and BB are needed for sustainable production of food. An incomplete diallele design resulted in 25 crosses between five blast and five BB resistant germplasm accessions. Only one pair of parents, DH146 ×TM487, showed polymorphism for all the markers to identify one blast resistance gene Pi25 and three BB resistance genes, Xa21, xa13 and xa5, thus it was used in the marker-assisted selection (MAS). F2 individuals of DH146× TM487 were genotyped using flanking markers of RM3330 and sequence tagged site (STS) marker SA7 for Pi25. The resistant F2 plants with Pi25 were used for pyramiding BB resistance genes Xa21, xa13 and xa5 identified by the markers pTA248, RM264 and RM153, respectively in subsequent generations. Finally, after selection for agronomic traits and restoration ability among 12 pyramided lines, we acquired an elite restorer line, R8012 including all four target genes (Pi25+Xa21+xa13+xa5). Hybrid Zhong 9NR8012 derived from the selected line showed stronger resistance to blast and BB, and higher grain yield than the commercial checks uniformally in experimental plots, 2007 state-wide yield trial and 2008 nation-wide yield trial. This study provides a paradigmatic example to show that MAS is a practically feasible tool in effectively pyramiding multiple resistance genes. The resultant restoring line and its hybrid would play an important role in securing rice production in China.