期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Genome-wide association with transcriptomics reveals a shade-tolerance gene network in soybean
1
作者 Yanzhu Su Xiaoshuai Hao +11 位作者 Weiying Zeng Zhenguang Lai Yongpeng Pan Can Wang Pengfei Guo Zhipeng Zhang Jianbo He Guangnan Xing Wubin Wang Jiaoping Zhang Zudong Sun Junyi Gai 《The Crop Journal》 SCIE CSCD 2024年第1期232-243,共12页
Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network g... Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network governing the trait in a set of recombinant inbred lines derived from two soybean parents with contrasting shade tolerance.An improved GWAS procedure,restricted two-stage multi-locus genome-wide association study based on gene/allele sequence markers(GASM-RTM-GWAS),identified 140 genes and their alleles associated with shade-tolerance index(STI),146 with relative pith cell length(RCL),and nine with both.Annotation of these genes by biological categories allowed the construction of a protein–protein interaction network by 187 genes,of which half were differentially expressed under shading and non-shading conditions as well as at different growth stages.From the identified genes,three ones jointly identified for both traits by both GWAS and transcriptome and two genes with maximum links were chosen as beginners for entrance into the network.Altogether,both STI and RCL gene systems worked for shade-tolerance with genes interacted each other,this confirmed that shadetolerance is regulated by more than single group of interacted genes,involving multiple biological functions as a gene network. 展开更多
关键词 Soybean(Glycine max(L.)Merr.) Shade-tolerance Restricted two-stage multi-locus genomewide association study based on gene/allele sequence markers(GASM-RTM-GWAS) Shade-tolerance index(STI) Relative cell length(RCL) Transcriptome
下载PDF
Precise gene replacement in plants through CRISPR/Cas genome editing technology:current status and future perspectives 被引量:5
2
作者 Shaoya Li Lanqin Xia 《aBIOTECH》 2020年第1期58-73,共16页
CRISPR/Cas,as a simple,versatile,robust and cost-effective system for genome manipulation,has dominated the genome editing field over the past few years.The application of CRISPR/Cas in crop improvement is particularl... CRISPR/Cas,as a simple,versatile,robust and cost-effective system for genome manipulation,has dominated the genome editing field over the past few years.The application of CRISPR/Cas in crop improvement is particularly important in the context of global climate change,as well as diverse agricultural,environmental and ecological challenges.Various CRISPR/Cas toolboxes have been developed and allow for targeted mutagenesis at specific genome loci,transcriptome regulation and epigenome editing,base editing,and precise targeted gene/allele replacement or tagging in plants.In particular,precise replacement of an existing allele with an elite allele in a commercial variety through homology-directed repair(HDR)is a holy grail in genome editing for crop improvement as it has been very difficult,laborious and time-consuming to introgress the elite alleles into commercial varieties without any linkage drag from parental lines within a few generations in crop breeding practice.However,it still remains very challenging in crop plants.This review intends to provide an informative summary of the latest development and breakthroughs in gene replacement using CRISPR/Cas technology,with a focus on achievements,potential mechanisms and future perspectives in plant biological science as well as crop improvement. 展开更多
关键词 CRISPR/Cas gene targeting(GT) gene/allele replacement Genome editing Homology-directed repair(HDR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部