Excessive nitrogen (N) exports caused by human activities are one of the main reasons for the numerous environmental problems in agricultural production. Orchards, as an essential part of agricultural production, play...Excessive nitrogen (N) exports caused by human activities are one of the main reasons for the numerous environmental problems in agricultural production. Orchards, as an essential part of agricultural production, play a crucial role in rural economic development and ecological environment construction. Understanding the migration pathways of N in orchards is significant for the scientific management of orchards and the reduction of environmental pollution. In this research, the source and fate of N in a typical orchard in Beijing were quantitatively analyzed. N management strategies were proposed in combination with agricultural production habits. The total N input into the orchard was 487.19 kg/hm^(2)·a, of which 85.44%, 10.99%, 3.30% and 0.27% of N input were from fertilizer application, atmospheric deposition, biological N fixation and pesticide, respectively. A large amount of N fertilizer application was the primary source of N input in the orchard. For the N fate, the N surplus in the soil could reach up to 68.40% of total N inputs, and only 20.16% were absorbed and utilized by plants. The amount of N losses through ammonia volatilization, runoff and sediment, nitrification and denitrification accounted for 10.68%, 0.39% and 0.37%, respectively. N input in the orchard mainly remained in soil, while N loss was mainly through ammonia volatilization. There were 176.72, 99.00, and 57.52 kg/hm^(2)·a N surplus in 0-40 cm, 40-80 cm, and over 80 cm soil layers, respectively. To deal with the N accumulation on the soil surface and the migration of N from the soil surface to the deep layer of orchards, reducing N fertilizer application, substituting circular furrow for the whole orchard fertilization, adjusting irrigation schedule by reducing the amount of single irrigation, increasing the frequency of irrigation to three times in the normal year, and adopting efficient water-saving irrigation technology are realizable methods.展开更多
Seismic sedimentology is a new frontier inter-discipline subject, and shows good prospect and potentiality in reservoir deposition research with seismic data and geophysics technologies. We made seismic sedimentology ...Seismic sedimentology is a new frontier inter-discipline subject, and shows good prospect and potentiality in reservoir deposition research with seismic data and geophysics technologies. We made seismic sedimentology research of shallow sea area, gentle slope belt of Chengning (埕宁) uplift, Bohalwan (渤海湾) basin. In shallow sea area with sparse well coverage, it was difficult to characterize the reservoir architecture with the traditional method based on wells. A new method to resolve the above problems is built: (1) information on plane and in section is inter-ealibrated with each other; (2) recognize the isochronic surfaces by frequency decomposition and interpret the depositional character with technology of stratal slicing; (3) make a comprehensive research with the stratal slice interpreta- tion and the dissection of well group. The depositional model of this area is built and used in the architecture analysis of area without wells. The architecture description reveals that the sedimentary character of pan-connection sand bodies in braided rivers is the reason for high water cut of the new horizontal wells. .展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51879005)the National Water Pollution Control and Treatment Science and Technology Major Project of China (Grant No.2017ZX07102-001).
文摘Excessive nitrogen (N) exports caused by human activities are one of the main reasons for the numerous environmental problems in agricultural production. Orchards, as an essential part of agricultural production, play a crucial role in rural economic development and ecological environment construction. Understanding the migration pathways of N in orchards is significant for the scientific management of orchards and the reduction of environmental pollution. In this research, the source and fate of N in a typical orchard in Beijing were quantitatively analyzed. N management strategies were proposed in combination with agricultural production habits. The total N input into the orchard was 487.19 kg/hm^(2)·a, of which 85.44%, 10.99%, 3.30% and 0.27% of N input were from fertilizer application, atmospheric deposition, biological N fixation and pesticide, respectively. A large amount of N fertilizer application was the primary source of N input in the orchard. For the N fate, the N surplus in the soil could reach up to 68.40% of total N inputs, and only 20.16% were absorbed and utilized by plants. The amount of N losses through ammonia volatilization, runoff and sediment, nitrification and denitrification accounted for 10.68%, 0.39% and 0.37%, respectively. N input in the orchard mainly remained in soil, while N loss was mainly through ammonia volatilization. There were 176.72, 99.00, and 57.52 kg/hm^(2)·a N surplus in 0-40 cm, 40-80 cm, and over 80 cm soil layers, respectively. To deal with the N accumulation on the soil surface and the migration of N from the soil surface to the deep layer of orchards, reducing N fertilizer application, substituting circular furrow for the whole orchard fertilization, adjusting irrigation schedule by reducing the amount of single irrigation, increasing the frequency of irrigation to three times in the normal year, and adopting efficient water-saving irrigation technology are realizable methods.
基金supported by the National Natural Science Foundation of China (No. 40872094)the Natural Science Foundation of Shandong Province (No. Z2008E01)
文摘Seismic sedimentology is a new frontier inter-discipline subject, and shows good prospect and potentiality in reservoir deposition research with seismic data and geophysics technologies. We made seismic sedimentology research of shallow sea area, gentle slope belt of Chengning (埕宁) uplift, Bohalwan (渤海湾) basin. In shallow sea area with sparse well coverage, it was difficult to characterize the reservoir architecture with the traditional method based on wells. A new method to resolve the above problems is built: (1) information on plane and in section is inter-ealibrated with each other; (2) recognize the isochronic surfaces by frequency decomposition and interpret the depositional character with technology of stratal slicing; (3) make a comprehensive research with the stratal slice interpreta- tion and the dissection of well group. The depositional model of this area is built and used in the architecture analysis of area without wells. The architecture description reveals that the sedimentary character of pan-connection sand bodies in braided rivers is the reason for high water cut of the new horizontal wells. .