期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impact of cooling rate on mechanical properties and failure mechanism of sandstone under thermal-mechanical coupling effect 被引量:1
1
作者 Pingye Guo Peng Zhang +2 位作者 Mohua Bu Hang Xing Manchao He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期97-116,共20页
High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical propert... High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical properties and failure mechanism of high-temperature rock disturbed by low-temperature airflow after excavation.Therefore,.the experimental and numerical investigation were carried out to study the impact of cooling rate on mechanical properties and failure mechanism of high temperature sandstone.First,uniaxial compression experiments of high temperature sandstone at different real-time cooling rates were carried out to study the mechanical properties and failure modes.The experimental results indicate that the cooling rate has a significant effect on the mechanical properties and failure modes of sandstone.The peak strain,peak stress,and elastic modulus decrease with an increase in cooling rate,and the fragmentation degree after failure increases gradually.Moreover,the equivalent numerical model of heterogeneous sandstone was established using particle flow code(PFC)to reveal the failure mechanism.The results indicate that the sandstone is dominated by intragrain failure in the cooling stage,the number of microcracks is exponentially related to the cooling rate,and the higher the cooling rate,the more cracks are concentrated in the exterior region.Under axial loading,the tensile stress is mostly distributed along the radial direction,and the damage in the cooling stage is mostly due to the fracture of the radial bond.In addition,axial loading,temperature gradient and thermal stress mismatch between adjacent minerals are the main reasons for the damage of sandstone in the cooling stage.Moreover,the excessive temperature gradient in the exterior region of the sandstone is the main reason for the damage concentration in this region. 展开更多
关键词 High geo-temperature Thermo-mechanical coupling effect Cooling rate SANDSTONE PFC
下载PDF
Heat flow and its coalbed gas effects in the central-south area of the Huaibei coalfield, eastern China 被引量:9
2
作者 TAN JingQiang JU YiWen +2 位作者 ZHANG WenYong HOU QuanLin TAN YongJie 《Science China Earth Sciences》 SCIE EI CAS 2010年第5期672-682,共11页
Based on an analysis of the present geo-temperature field and the thermal conductivity (K) of 62 samples from the central-south area of the Huaibei coalfield in eastern China, we calculated the heat flow and plotted i... Based on an analysis of the present geo-temperature field and the thermal conductivity (K) of 62 samples from the central-south area of the Huaibei coalfield in eastern China, we calculated the heat flow and plotted its distribution map. The results show that the average heat flow in the research area is about 60 mW/m2. It is different from other major energy basins in the North China Plate, but has close relationship with the regional geology and the deep geological setting. The heat flow is comparatively higher in the southeastern, central, and northwestern areas than in the northeastern and southwestern areas. The geo-temperature distribution map of the bottom interface of the Permian coal measure was drawn by calculating its embedding depth and geo-temperature gradients. Finally, the present gas generation condition of the Permian coal measure is discussed by associating with the temperature condition, the vitrinite reflectance (Ro), the metamorphism of coal and tectonic-burial evolution. The study indicates all present characters of the Permian coal measure, such as lower present temperature, higher Ro value, middle-high rank coals, and uplift and extension events after the coal measure sediment, are favorable for the generation of secondary biogenic gas, but not thermogenic gas or primary biogenic gas. 展开更多
关键词 PRESENT geo-temperature thermal CONDUCTIVITY heat flow coalbed gas RESOURCE effect coal MEASURE Huaibei coalfield
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部