The oilseed crop Camelina sativa exhibits salinity tolerance,but the effects on early growth stages across a range of different salts and in combination with salicylic acid(SA)have not been thoroughly evaluated.In thi...The oilseed crop Camelina sativa exhibits salinity tolerance,but the effects on early growth stages across a range of different salts and in combination with salicylic acid(SA)have not been thoroughly evaluated.In this study,seeds were germinated in varying concentrations of six salts(NaCl,CaCl_(2),ZnCl_(2),KCl,MgSO_(4),and Na2SO_(4))with or without 0.5 mM SA.Using the halotime model,we estimated salt thresholds for germination and parameters of seedling growth.Germination and seedling growth parameters of camelina significantly decreased with increasing salt concentration across all salt types.Salts containing Zn and SO_(4) were most detrimental to germination and seedling growth.Except for KCl,0.5 mM SA generally reduced the salinity tolerance threshold(Saltb(50))of camelina.Specifically,Saltb(50)was 21.5%higher for KCl and 16.1%,25.0%,54.9%,21.0%,and 5.6%lower for CaCl_(2),NaCl,MgSO_(4),Na2SO_(4),and ZnCl_(2),respectively,when 0.5 mM SA was compared to 0 mM SA.Furthermore,camelina seedling growth was consistently more sensitive than germination across all salt types.SA did not significantly enhance germination or seedling growth and was harmful when combined with certain salts or at the germination stage.It can be concluded that both the type of salt and the concentration of SA are as critical as the salt concentration in saline irrigation water.展开更多
Seed priming is an effective seed pretreatment technology that enhances germination and overall crop performance by optimizing seed hydration and metabolic processes before planting.Seed quality is a critical determin...Seed priming is an effective seed pretreatment technology that enhances germination and overall crop performance by optimizing seed hydration and metabolic processes before planting.Seed quality is a critical determinant of cotton(Gossypium hirsutum)crop performance,influencing germination,plant vigor,and yield.This study evaluates the effects of seed priming with potassium salts(1%and 2%KCl and K2SO4)on germination,morphological traits,and Cry1Ac gene expression in three Bt cotton cultivars(IUB-2013,NIAB-878B,FH-142)as Cry1Ac enhance the pest resistance in Bt cotton and reduce the plant’s dependence on chemical insecticides.Seeds were primed for six hours,air-dried,and sown in the field.Germination rates,plant height,number of bolls per plant,boll weight,seed cotton yield,and ginning outturn(GOT)were assessed at crop maturity.Cry1Ac gene expression was quantified to explore the influence of priming treatments on transgene activity.Results demonstrated that 1%K2SO4 priming significantly enhanced germination and yield-related traits,with Cry1Ac expression peaking in the IUB-2013 cultivar under 1%K2SO4 treatment.These findings suggest that potassium-based halopriming improves cotton seedling establishment and Bt gene expression.This study addresses the critical gaps in understanding the effects of seed halopriming on morphological traits,germination,and expression of the Cry1Ac gene in Bt cotton while providing a novel eco-friendly and cost-effective halopriming approach,offering the potential to improve cotton production.展开更多
Multiple phytohormones,including gibberellin(GA),abscisic acid(ABA),and indole-3-acetic acid(IAA),regulate seed germination.In this study,a barley aldehyde oxidase 1(HvAO1)gene was identified,which is located near the...Multiple phytohormones,including gibberellin(GA),abscisic acid(ABA),and indole-3-acetic acid(IAA),regulate seed germination.In this study,a barley aldehyde oxidase 1(HvAO1)gene was identified,which is located near the SD2(seed dormancy 2)region at the telomeric end of chromosome 5H.A doubledhaploid population(AC Metcalfe/Baudin)was used to characterize HvAO1 and validated its association with seed germination and malting quality.Aldehyde oxidase is predicted to catalyse the oxidation of various aldehydes,such as indoleacetaldehyde and abscisic aldehyde,into IAA and ABA,which is the final step of IAA/ABA biogenesis.This process influences the final IAA/ABA concentration in the seed,affecting the seed dormancy.Sequence analysis revealed substantial variations in the HvAO1 promoter regions between AC Metcalfe and Baudin.The combining seed germination tests,genetic variation analysis,gene expression,and phytohormone measurements showed that Baudin,which displays strong seed dormancy,has a specific sequence variation in the promoter region of the HvAO1 gene.This variation is associated with a higher expression level of the HvAO1 gene and an increased level of ABA than those in AC Metcalfe,which shows weak dormancy and lacks this sequence variation.In addition to its strong effect on the SD2 gene,HvAO1 shows excellent potential to fine-tune malting quality and seed dormancy,as evidenced by genotyping with HvAO1-specific markers,dormancy phenotypes,and malting quality.Our findings provide a new strategy for introducing favourable HvAO1 alleles to achieve the desired level of seed dormancy and high malting quality in barley.展开更多
With Welsh Onion seeds employed as materials, effects of magnetized water on seed Germination were studied. The results showed the treatment of magnetized water soaking for 4 h promoted water absorption rate and amyla...With Welsh Onion seeds employed as materials, effects of magnetized water on seed Germination were studied. The results showed the treatment of magnetized water soaking for 4 h promoted water absorption rate and amylase ac- tivities of seeds significantly, which accelerated the transformation process of en- dosperm starch to soluble sugar, resulting in emergence of 36 hours in advance under low temperature condition. Germination rate and germination potential of magnetized water soaking were higher than the contrast by 6.7% and 10.0%, which helped cultivate vigorous seedling.展开更多
The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylest...The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.展开更多
Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination a...Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination and seedling growth of direct-seeded rice.Recently,nanoparticles(NPs)have been reported to be effectively involved in many plant physiological processes,particularly under abiotic stresses.To our knowledge,no comparative studies have been performed to study the efficiency of conventional,chemical,and seed nanopriming for better plant stress tolerance.Therefore,we conducted growth chamber and field experiments with different salinity levels(0,1.5,and 3‰),two rice varieties(CY1000 and LLY506),and different priming techniques such as hydropriming,chemical priming(ascorbic acid,salicylic acid,and γ-aminobutyric acid),and nanopriming(zinc oxide nanoparticles).Salt stress inhibited rice seed germination,germination index,vigor index,and seedling growth.Also,salt stress increased the over accumulation of reactive oxygen species(H_(2)O_(2) and O_(2)^(-)·)and malondialdehyde(MDA)contents.Furthermore,salt-stressed seedlings accumulated higher sodium(Na^(+))ions and significantly lower potassium(K^(+))ions.Moreover,the findings of our study demonstrated that,among the different priming techniques,seed nanopriming with zinc oxide nanoparticles(NanoZnO)significantly contributed to rice salt tolerance.ZnO nanopriming improved rice seed germination and seedling growth in the pot and field experiments under salt stress.The possible mechanism behind ZnO nanopriming improved rice salt tolerance included higher contents of α-amylase,soluble sugar,and soluble protein and higher activities of antioxidant enzymes to sustain better seed germination and seedling growth.Moreover,another mechanism of ZnO nanopriming induced rice salt tolerance was associated with better maintenance of(K^(+))ions content.Our research concluded that NanoZnO could promote plant salt tolerance and be adopted as a practical nanopriming technique,promoting global crop production in saltaffected agricultural lands.展开更多
Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly ...Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.展开更多
Biological invasion represents a major worldwide threat to native biodiversity and environmental stability.Haloxylon persicum was introduced to Tunisia(North Africa)with Saharan bioclimate in 1969 to fix sandy dunes.S...Biological invasion represents a major worldwide threat to native biodiversity and environmental stability.Haloxylon persicum was introduced to Tunisia(North Africa)with Saharan bioclimate in 1969 to fix sandy dunes.Since then,it has gained significant interest for its potential to colonize,proliferate,and become naturalized in Tunisia.Hence,understanding the seed germination response of H.persicum to abiotic conditions,including temperature,water stress,and salt stress,is crucial for predicting its future spread and adopting effective control strategies.Our work investigated the germination behavior of this invasive plant species by incubation at temperatures from 10.0℃ to 35.0℃ and at various osmotic potentials(-2.00,-1.60,-1.00,-0.50,and 0.00 MPa)of polyethylene glycol-6000(PEG6000,indicating water stress)and sodium chloride(NaCl,indicating salt stress)solutions.Results showed remarkable correlations among the seed functional traits of H.persicum,indicating adaptive responses to local environmental constraints.The maximum germination rate was recorded at 25.0℃ with a rate of 0.39/d.Using the thermal time model,the base temperature was recorded at 8.4℃,the optimal temperature was 25.5℃,and the ceiling temperature was found at 58.3℃.Besides,based on the hydrotime model,the base water potential showed lower values of -7.74 and -10.90 MPa at the optimal temperatures of 25.0℃ and 30.0℃,respectively.Also,the species was found to have excellent tolerance to drought(water stress)compared to salt stress,which has implications for its potential growth into new habitats under climate change.Combining ecological and physiological approaches,this work elucidates the invasive potential of H.persicum and contributes to the protection of species distribution in Tunisian ecosystems.展开更多
Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germinat...Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding.展开更多
To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design ...To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design methodsto investigate the seed coating formula and physical properties of Tartary buckwheat. The specific effects ofeach component on Tartary buckwheat seed germination are analyzed. The findings reveal that the seed coatingagent formulated with 1.5% polyvinyl alcohol, 0.15% sodium alginate, 0.2% op-10, 0.1% polyacrylamide, 8% colorant,3% ammonium sulfate, 1% potassium dihydrogen phosphate, and 0.15% carbendazim exhibits the mosteffective coating. It demonstrates optimal physical properties and promotes seed germination efficiently. The suspensionrate of this seed coating agent reaches 91.12%, with a mere 2.13% coating shedding rate and 2.5% coatingseed rot rate. Furthermore, it achieves a germination percentage of 99.17%, which is 20.84% higher than the lowestgroup. The germination potential and index are also significantly higher than the lowest group, with anincrease of 20.84% and 26.56%, respectively. Additionally, the vitality index is 553.08, a 15.75% increase comparedto the lowest group. The application of seed coating agents helps reduce seed resource loss, increase plant numbers,and ultimately enhance agricultural yields. This finding holds practical significance in agriculturalproduction.展开更多
[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as...[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production.展开更多
Hippophae rhamnoides L.is extensively distributed throughout China and plays a pioneering role in combating desertification and soil erosion in northern regions.H.rhamnoides contains abundant nutrients and is of medic...Hippophae rhamnoides L.is extensively distributed throughout China and plays a pioneering role in combating desertification and soil erosion in northern regions.H.rhamnoides contains abundant nutrients and is of medical and economic value.However,there has been a lack of research on sea buckthorn seeds,both domestically and internationally,particularly regarding the mechanisms governing their growth and germination.Therefore,to explore the growth of sea buckthorn seeds,this study analyzed and studied the molecular mechanism of seed germination process of sea buckthorn.To better understand the molecular mechanism underlying seed germination in sea buckthorn,we used transcriptomics to compare gene expression before and after seed germination in H.rhamnoides subsp.sinensis Rousi.We identified 9,988 differentially expressed genes(5,593 upregulated and 4,395 downregulated).A bioinformatics-based analysis revealed that changes in plant hormone signal transduction and starch and sucrose metabolism-related gene expression may regulate seed germination in this species.Notably,the levels of auxin(IAA),cytokinin(CTK),and brassinosteroids(BR)increased during seed germination while those of ABA decreased.Exogenous application of IAA,CTK,and BR promoted sea buckthorn seed germination,while ABA inhibited it.These findings suggested that hormones play an important role in the process of sea buckthorn seed germination.This study provides preliminary information about the seed germination mechanism in sea buckthorn,offering an essential reference for improving seed breeding and germplasm and laying the foundation for further resistance research on the molecular mechanism of seed germination of sea buckthorn in this species.展开更多
Humic acids can promote the germination of many vegetable seeds,but the key active components remain unclear.This study utilized nutrient content,cross polarization magic angle spin ^(13)C solid magnetic resonance(CPM...Humic acids can promote the germination of many vegetable seeds,but the key active components remain unclear.This study utilized nutrient content,cross polarization magic angle spin ^(13)C solid magnetic resonance(CPMAS-^(13)C-NMR)and ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS)to characterize the chemical components of humic acids.Tomato seed germination index(GI)was determined with the goal of screening the key active components of humic acids.Humic acids had a significantly higher nutrient content,except for the total nitrogen(TN)and the total phosphorus(TP)contents.Humic acids had a higher content of O-CH_(3)/NCH,aromatic C-O and carbonyl C compared to weathered coal,with significantly lower anomeric C,aromatic C and O-alkyl C/alkyl C.There were 611 different compounds identified among the test materials using UHPLC-MS.Humic acids also had a significantly higher GI(158.0%and 153.1%)than weathered coal(85.5%).The organic matter(OM),TP and available potassium(AK)contents in humic acids were significantly positively correlated with GI,and available phosphorus(AP)was significantly negatively correlated.Among the carbon components,O-CH3/NCH,aromatic C-O and O-alkyl C/alkyl C were significantly positively correlated with GI,while anomeric C was significantly negatively correlated.Furthermore,among the top 10 positive and five negative correlation compounds,lipids and lipid-like molecules[armexifolin,boviquinone 4,3-methyladipic acid,lxocarpalactone A,monic acid,DG(20:1(11Z)/18:4(6Z,9Z,12Z,15Z)/0:0),and brassinolide]and organic acids and derivatives(N-acetylglutamic acid,8-hydroxy-5,6-octadienoic acid,acetyl-L-tyrosine,and hydroxyprolyl-methionine)in humic acids might be crucial active components for improving tomato seed germination.The results provided direct evidence for the identification of bioactive molecules of humic acids,and a scientific basis for the precise utilization of bioactive molecular components of humic acids in sustainable agricultural development.展开更多
Anthropogenic pressures, climate change, and certain factors, including seed coat dormancy, hinder the natural regeneration of some tree species such as Irvingia gabonensis. This study, conducted in the city of Soubre...Anthropogenic pressures, climate change, and certain factors, including seed coat dormancy, hinder the natural regeneration of some tree species such as Irvingia gabonensis. This study, conducted in the city of Soubre, aimed to evaluate the germination potential of Irvingia gabonensis seeds and investigate the growth of seedlings from various treatments within an agroforestry perspective. The methodology involved subjecting seeds to fourteen different pre-treatments. These included seeds 1) treated with water at 100˚C;2) soaked in tap water for varying periods (days);3) treated with concentrated sulphuric acid at 96%;4) soaked directly in GA3 at different concentrations;5) scarified and soaked in GA3;and 6) untreated seeds, which served as controls. For the growth tests, the growth of seedlings from seeds treated with GA3 was compared with seedlings from control and scarified seed lots. The most satisfactory results were observed with scarified seeds soaked in gibberellin solution at 0.5 and 2 mg/L, yielding 46.66% and 56.66% germination, respectively. However, the best result was obtained with seeds soaked in GA3 at a concentration of 2 mg/L (50%). The findings showed that control seedlings exhibited similar growth to those derived from GA3-treated seeds.展开更多
Low germination and vigor of rice seed associated with dry-seed broadcasting are common problems encountered by rice growers.The objectives of this study were to evaluate the role of potassium nitrate(KNO3)on the pa...Low germination and vigor of rice seed associated with dry-seed broadcasting are common problems encountered by rice growers.The objectives of this study were to evaluate the role of potassium nitrate(KNO3)on the pattern of seed imbibition and to determine the effect of seed priming with KNO3 on the germination percentage,speed and uniformity of germination in rice seed.Experiment 1 compared the patterns of seed imbibition of six concentrations of KNO3(0,0.25,0.50,1.00,1.50,and 2.00%)in two rice cultivars-KDML105 and RD15.The results showed that soaking rice seed in KNO3 at higher concentrations could delay the imbibition time.The higher concentrations of KNO3 delayed the imbibition time of rice seed and took a longer time to reach the end of phases 1 and 2 compared to the lower concentrations.The patterns of seed imbibition using distilled water of both rice cultivars(KDML105 and RD15)were quite similar,but with different concentrations of KNO3,the imbibition time taken to reach the end of phases 1 and 2 was slightly postponed in KDML105 suggesting that different rice cultivars may need different imbibition times for soaking seed in the priming process.Experiment 2 evaluated the effects of seed priming with 1.0 and 2.0%KNO3 at different imbibition times.It was found that priming with 1.0%KNO3 showed better seed germination than priming with 2.0%KNO3 and seed priming with 1.0%KNO3 at the imbibition time of early phase 2(or 28 h for KDML105)improved seed germination and increased both the speed and uniformity of seed germination.The results of this study show promise for the use of priming with 1.0%KNO3 soaked until early phase 2 of seed imbibition for improving the seed germination and vigor of rice in dry seed broadcasting.展开更多
[Objective] This study aimed to determine the optimum ethyl methane sulfonate(EMS) concentration for germination of tarary buckwheat seeds so as to lay a solid foundation for obtaining excellent traits of tarary buc...[Objective] This study aimed to determine the optimum ethyl methane sulfonate(EMS) concentration for germination of tarary buckwheat seeds so as to lay a solid foundation for obtaining excellent traits of tarary buckwheat and breeding new varieties that meet the requirements by EMS mutation breeding. [Method] The seeds of Jinqiaomai No.4, a local tarary buckwheat variety [Fagopyrum tataricum(L.) Gaertn] in Shanxi Province, were used as the material. They were mutagenized by different concentrations(0.3%, 0.5%, 0.7%, 1.0%, 1.5%, 1.7%) of EMS for different times(4, 8, 12 h). Then the germination rate and germination vigor were analyzed. [Result] With the increase of EMS mutagenic agent concentration, the germination vigor, relative germination vigor, germination rate and relative germination rate are all trended to be decreased. When the EMS concentrations ranged from 0.3%to 1.0%, there were no significant differences between treatment and control groups(P〉0.05). When the EMS concentrations were 1.5% and 1.7%, significant differences were shown between treatment and control groups(P〈0.01). The 4 and 8 h treatment of EMS all had no significant effects on germination rate and relative germination rate of Jinqiaomai No.4, but the 12 h treatment of EMS showed significant effects. Among the three treatment times, there were still no significant differences in germination vigor and relative germination vigor between treatment and control groups. [Conclusion] The optimum median lethal dose and treatment time of EMS for mutagenizing Jinqiaomai No.4 were 1.7% and 12 h, respectively.展开更多
[Objective] This study aimed to investigate the effects of induced concen- tration and time of EMS on seed germination of common buckwheat. [Method] The seeds of Jinqiaomai No.3, a common buckwheat cultivar, were used...[Objective] This study aimed to investigate the effects of induced concen- tration and time of EMS on seed germination of common buckwheat. [Method] The seeds of Jinqiaomai No.3, a common buckwheat cultivar, were used as the test material, and their germination was induced by different concentrations of EMS un- der different induced times. The germination rate, germination vigor, relative germi- nation rate and relative germination vigor of Jinqiaomai No.3 were measured. [Re- sult] With increased induced concentration and time of EMS, the germination rate, germination vigor, relative germination rate and relative germination vigor of Jinqiao- mai No.3 were all trended to be decreased. For Jinqiaomai No.3, the optima in- duced concentration and time of EMS was 1.0% and 4 h, respectively, and the lethal concentration was 1.7%. [Conclusion] The induced concentration and time of EMS all showed significant effects on seed germination of Jinqiaomai No.3.展开更多
Revegetation of disturbed land, particularly in arid environment, is often hindered by low seedling establishment. Information on seed biology and germination cues of valuable species is lacking. We investigated seed ...Revegetation of disturbed land, particularly in arid environment, is often hindered by low seedling establishment. Information on seed biology and germination cues of valuable species is lacking. We investigated seed germination of two Acacia species (Acacia tortilis (Forsk.) Hayne and Acacia oerfota (Forssk) schwein/), required for nitrogen fixation and rehabilitation of arid and semi-arid areas.(four pregermination seed treatments were applied in order to find the best treatment in germinating acacia species. The medium was L2 and three replicates were used. Seeds pretreated with sand paper and also with H2SO4 and then H2O2 had the highest germination percentage in both species. The lowest germination percentage resulted from soaking seeds in water for 48 h followed by soaking in H2SO4 for A. oerfota and from soaking in water for 24 h for A. tortilis. Because the use of sand paper is difficult and time consuming, we recommend pretreatment ofA. tortilis and A. oerfota seeds with H2SO4 and H2O2 before planting. Our study results are significant for conservation agencies with an interest in optimizing germination in arid zones for rehabilitation and reforestation.展开更多
[Objective] The aim of this study was to provide the theoretical basis for screening and utilizing salt-tolerant tomato varieties as well as for cultivating salt-resistance.[Method] Salinity tolerance of tomato during...[Objective] The aim of this study was to provide the theoretical basis for screening and utilizing salt-tolerant tomato varieties as well as for cultivating salt-resistance.[Method] Salinity tolerance of tomato during seed germination under simple salt sodium chloride and double salt calcium nitrate or sodium chloride stress were studied by Petri dish culturing.[Result] As the two kinds salt concentration increased,the germination regularity,the germination rate,the germination index and the growing vigor index of tomato seedlings decreased,but the germination losing rate increased.When salt concentration was from 0.2% to 0.4%,there was little difference among all indexes under two kinds of salt stress.However,when salt concentration was from 0.6% to 1.0%,the difference among all indexes under two kinds of salt stress was significant.[Conclusion] Salinity tolerance of tomato seeds under double salt calcium nitrate or sodium chloride stress was higher than that under simple salt sodium chloride stress.展开更多
Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even t...Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3).展开更多
文摘The oilseed crop Camelina sativa exhibits salinity tolerance,but the effects on early growth stages across a range of different salts and in combination with salicylic acid(SA)have not been thoroughly evaluated.In this study,seeds were germinated in varying concentrations of six salts(NaCl,CaCl_(2),ZnCl_(2),KCl,MgSO_(4),and Na2SO_(4))with or without 0.5 mM SA.Using the halotime model,we estimated salt thresholds for germination and parameters of seedling growth.Germination and seedling growth parameters of camelina significantly decreased with increasing salt concentration across all salt types.Salts containing Zn and SO_(4) were most detrimental to germination and seedling growth.Except for KCl,0.5 mM SA generally reduced the salinity tolerance threshold(Saltb(50))of camelina.Specifically,Saltb(50)was 21.5%higher for KCl and 16.1%,25.0%,54.9%,21.0%,and 5.6%lower for CaCl_(2),NaCl,MgSO_(4),Na2SO_(4),and ZnCl_(2),respectively,when 0.5 mM SA was compared to 0 mM SA.Furthermore,camelina seedling growth was consistently more sensitive than germination across all salt types.SA did not significantly enhance germination or seedling growth and was harmful when combined with certain salts or at the germination stage.It can be concluded that both the type of salt and the concentration of SA are as critical as the salt concentration in saline irrigation water.
基金National Natural Science Foundation of China(3216045632360474+2 种基金32360486)grants from the Provincial Basic Research Program(Natural Science)([2020]1Z018)Provincial Key Technology R&D Program([2021]YiBan272).
文摘Seed priming is an effective seed pretreatment technology that enhances germination and overall crop performance by optimizing seed hydration and metabolic processes before planting.Seed quality is a critical determinant of cotton(Gossypium hirsutum)crop performance,influencing germination,plant vigor,and yield.This study evaluates the effects of seed priming with potassium salts(1%and 2%KCl and K2SO4)on germination,morphological traits,and Cry1Ac gene expression in three Bt cotton cultivars(IUB-2013,NIAB-878B,FH-142)as Cry1Ac enhance the pest resistance in Bt cotton and reduce the plant’s dependence on chemical insecticides.Seeds were primed for six hours,air-dried,and sown in the field.Germination rates,plant height,number of bolls per plant,boll weight,seed cotton yield,and ginning outturn(GOT)were assessed at crop maturity.Cry1Ac gene expression was quantified to explore the influence of priming treatments on transgene activity.Results demonstrated that 1%K2SO4 priming significantly enhanced germination and yield-related traits,with Cry1Ac expression peaking in the IUB-2013 cultivar under 1%K2SO4 treatment.These findings suggest that potassium-based halopriming improves cotton seedling establishment and Bt gene expression.This study addresses the critical gaps in understanding the effects of seed halopriming on morphological traits,germination,and expression of the Cry1Ac gene in Bt cotton while providing a novel eco-friendly and cost-effective halopriming approach,offering the potential to improve cotton production.
基金supported by the Engineering Research Center of Ecology and Agricultural Use of Wetland,Ministry of Education(KFT202302)the National Natural Science Foundation of China(32372052).
文摘Multiple phytohormones,including gibberellin(GA),abscisic acid(ABA),and indole-3-acetic acid(IAA),regulate seed germination.In this study,a barley aldehyde oxidase 1(HvAO1)gene was identified,which is located near the SD2(seed dormancy 2)region at the telomeric end of chromosome 5H.A doubledhaploid population(AC Metcalfe/Baudin)was used to characterize HvAO1 and validated its association with seed germination and malting quality.Aldehyde oxidase is predicted to catalyse the oxidation of various aldehydes,such as indoleacetaldehyde and abscisic aldehyde,into IAA and ABA,which is the final step of IAA/ABA biogenesis.This process influences the final IAA/ABA concentration in the seed,affecting the seed dormancy.Sequence analysis revealed substantial variations in the HvAO1 promoter regions between AC Metcalfe and Baudin.The combining seed germination tests,genetic variation analysis,gene expression,and phytohormone measurements showed that Baudin,which displays strong seed dormancy,has a specific sequence variation in the promoter region of the HvAO1 gene.This variation is associated with a higher expression level of the HvAO1 gene and an increased level of ABA than those in AC Metcalfe,which shows weak dormancy and lacks this sequence variation.In addition to its strong effect on the SD2 gene,HvAO1 shows excellent potential to fine-tune malting quality and seed dormancy,as evidenced by genotyping with HvAO1-specific markers,dormancy phenotypes,and malting quality.Our findings provide a new strategy for introducing favourable HvAO1 alleles to achieve the desired level of seed dormancy and high malting quality in barley.
基金Supported by China Spark Program for Science and Technology(2011GA740072)Shandong Provincial Soft Scientific Research Project(2015RKC35001)Shandong Provincial Agricultural High-quality Seed Engineering(2016LZGC019)~~
文摘With Welsh Onion seeds employed as materials, effects of magnetized water on seed Germination were studied. The results showed the treatment of magnetized water soaking for 4 h promoted water absorption rate and amylase ac- tivities of seeds significantly, which accelerated the transformation process of en- dosperm starch to soluble sugar, resulting in emergence of 36 hours in advance under low temperature condition. Germination rate and germination potential of magnetized water soaking were higher than the contrast by 6.7% and 10.0%, which helped cultivate vigorous seedling.
基金funded by the National Natural Science Foundation of China(32072022)the Nanfan Special Project,CAAS(YBXM07)the Hainan Yazhou Bay Seed Laboratory,China(B23CJ0208)。
文摘The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.
基金supported by the Foundation of Major Projects in Hainan Province,China(ZDKJ202001)the Research Initiation Fund of Hainan University,China(KYQD(ZR)19104)。
文摘Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination and seedling growth of direct-seeded rice.Recently,nanoparticles(NPs)have been reported to be effectively involved in many plant physiological processes,particularly under abiotic stresses.To our knowledge,no comparative studies have been performed to study the efficiency of conventional,chemical,and seed nanopriming for better plant stress tolerance.Therefore,we conducted growth chamber and field experiments with different salinity levels(0,1.5,and 3‰),two rice varieties(CY1000 and LLY506),and different priming techniques such as hydropriming,chemical priming(ascorbic acid,salicylic acid,and γ-aminobutyric acid),and nanopriming(zinc oxide nanoparticles).Salt stress inhibited rice seed germination,germination index,vigor index,and seedling growth.Also,salt stress increased the over accumulation of reactive oxygen species(H_(2)O_(2) and O_(2)^(-)·)and malondialdehyde(MDA)contents.Furthermore,salt-stressed seedlings accumulated higher sodium(Na^(+))ions and significantly lower potassium(K^(+))ions.Moreover,the findings of our study demonstrated that,among the different priming techniques,seed nanopriming with zinc oxide nanoparticles(NanoZnO)significantly contributed to rice salt tolerance.ZnO nanopriming improved rice seed germination and seedling growth in the pot and field experiments under salt stress.The possible mechanism behind ZnO nanopriming improved rice salt tolerance included higher contents of α-amylase,soluble sugar,and soluble protein and higher activities of antioxidant enzymes to sustain better seed germination and seedling growth.Moreover,another mechanism of ZnO nanopriming induced rice salt tolerance was associated with better maintenance of(K^(+))ions content.Our research concluded that NanoZnO could promote plant salt tolerance and be adopted as a practical nanopriming technique,promoting global crop production in saltaffected agricultural lands.
基金supported by the Key Research and Development Program of Shaanxi(2021NY-083)the National Natural Science Foundation of China(31871567).
文摘Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.
基金supported by the Tunisian Ministry of Higher Education and Scientific Research,Research General Direction,Excellence Project(21P2ES-D1P3)the International Foundation for Science(IFS)(I1-D-6596-1).
文摘Biological invasion represents a major worldwide threat to native biodiversity and environmental stability.Haloxylon persicum was introduced to Tunisia(North Africa)with Saharan bioclimate in 1969 to fix sandy dunes.Since then,it has gained significant interest for its potential to colonize,proliferate,and become naturalized in Tunisia.Hence,understanding the seed germination response of H.persicum to abiotic conditions,including temperature,water stress,and salt stress,is crucial for predicting its future spread and adopting effective control strategies.Our work investigated the germination behavior of this invasive plant species by incubation at temperatures from 10.0℃ to 35.0℃ and at various osmotic potentials(-2.00,-1.60,-1.00,-0.50,and 0.00 MPa)of polyethylene glycol-6000(PEG6000,indicating water stress)and sodium chloride(NaCl,indicating salt stress)solutions.Results showed remarkable correlations among the seed functional traits of H.persicum,indicating adaptive responses to local environmental constraints.The maximum germination rate was recorded at 25.0℃ with a rate of 0.39/d.Using the thermal time model,the base temperature was recorded at 8.4℃,the optimal temperature was 25.5℃,and the ceiling temperature was found at 58.3℃.Besides,based on the hydrotime model,the base water potential showed lower values of -7.74 and -10.90 MPa at the optimal temperatures of 25.0℃ and 30.0℃,respectively.Also,the species was found to have excellent tolerance to drought(water stress)compared to salt stress,which has implications for its potential growth into new habitats under climate change.Combining ecological and physiological approaches,this work elucidates the invasive potential of H.persicum and contributes to the protection of species distribution in Tunisian ecosystems.
基金supported by the Hainan Province Science and Technology Special Fund,China(ZDYF2023XDNY086)the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2022-87)+1 种基金the Natural Science Foundation of Guangdong Province,China(2023A1515012052,2023A1515012092)the Science and Technology Project of Guangzhou,China(2023A04J0749,2023A04J1452).
文摘Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding.
基金the Sichuan Science and Technology Program(2023NSFSC0214)China Agriculture Research System(CARS-07-B-1)+1 种基金National Natural Sciences Foundation of China(Nos.3230185031771716).
文摘To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design methodsto investigate the seed coating formula and physical properties of Tartary buckwheat. The specific effects ofeach component on Tartary buckwheat seed germination are analyzed. The findings reveal that the seed coatingagent formulated with 1.5% polyvinyl alcohol, 0.15% sodium alginate, 0.2% op-10, 0.1% polyacrylamide, 8% colorant,3% ammonium sulfate, 1% potassium dihydrogen phosphate, and 0.15% carbendazim exhibits the mosteffective coating. It demonstrates optimal physical properties and promotes seed germination efficiently. The suspensionrate of this seed coating agent reaches 91.12%, with a mere 2.13% coating shedding rate and 2.5% coatingseed rot rate. Furthermore, it achieves a germination percentage of 99.17%, which is 20.84% higher than the lowestgroup. The germination potential and index are also significantly higher than the lowest group, with anincrease of 20.84% and 26.56%, respectively. Additionally, the vitality index is 553.08, a 15.75% increase comparedto the lowest group. The application of seed coating agents helps reduce seed resource loss, increase plant numbers,and ultimately enhance agricultural yields. This finding holds practical significance in agriculturalproduction.
基金Supported by Zhejiang Basic Public Welfare Research Program Project(LGN21C020006)Key Research and Development Project of Zhejiang Province(2021C02057)+1 种基金Zhejiang Major Science and Technology Project of Agricultural New Variety(Upland Food)Breeding(2021C02064)Key Research and Development Project of Zhejiang Province(2022C04024).
文摘[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production.
基金financial support from the National Natural Science Foundation of China(32160353)the Natural Science Foundation of Gansu Province,China(22JR5RA263)Lanzhou University of Technology Hongliu Outstanding Youth Talent.
文摘Hippophae rhamnoides L.is extensively distributed throughout China and plays a pioneering role in combating desertification and soil erosion in northern regions.H.rhamnoides contains abundant nutrients and is of medical and economic value.However,there has been a lack of research on sea buckthorn seeds,both domestically and internationally,particularly regarding the mechanisms governing their growth and germination.Therefore,to explore the growth of sea buckthorn seeds,this study analyzed and studied the molecular mechanism of seed germination process of sea buckthorn.To better understand the molecular mechanism underlying seed germination in sea buckthorn,we used transcriptomics to compare gene expression before and after seed germination in H.rhamnoides subsp.sinensis Rousi.We identified 9,988 differentially expressed genes(5,593 upregulated and 4,395 downregulated).A bioinformatics-based analysis revealed that changes in plant hormone signal transduction and starch and sucrose metabolism-related gene expression may regulate seed germination in this species.Notably,the levels of auxin(IAA),cytokinin(CTK),and brassinosteroids(BR)increased during seed germination while those of ABA decreased.Exogenous application of IAA,CTK,and BR promoted sea buckthorn seed germination,while ABA inhibited it.These findings suggested that hormones play an important role in the process of sea buckthorn seed germination.This study provides preliminary information about the seed germination mechanism in sea buckthorn,offering an essential reference for improving seed breeding and germplasm and laying the foundation for further resistance research on the molecular mechanism of seed germination of sea buckthorn in this species.
基金Supported by the National Natural Science Foundation of China(42207371)the Technological Project of Jiangsu Vocational College of Agriculture and Forestry(2021kj17)+1 种基金Yafu Technology Innovation and Service Major Project of Jiangsu Vocational College of Agriculture and Forestry(2024kj01)Key Research Projects of Jiangsu Vocational College of Agriculture and Forestry(2023kj14)。
文摘Humic acids can promote the germination of many vegetable seeds,but the key active components remain unclear.This study utilized nutrient content,cross polarization magic angle spin ^(13)C solid magnetic resonance(CPMAS-^(13)C-NMR)and ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS)to characterize the chemical components of humic acids.Tomato seed germination index(GI)was determined with the goal of screening the key active components of humic acids.Humic acids had a significantly higher nutrient content,except for the total nitrogen(TN)and the total phosphorus(TP)contents.Humic acids had a higher content of O-CH_(3)/NCH,aromatic C-O and carbonyl C compared to weathered coal,with significantly lower anomeric C,aromatic C and O-alkyl C/alkyl C.There were 611 different compounds identified among the test materials using UHPLC-MS.Humic acids also had a significantly higher GI(158.0%and 153.1%)than weathered coal(85.5%).The organic matter(OM),TP and available potassium(AK)contents in humic acids were significantly positively correlated with GI,and available phosphorus(AP)was significantly negatively correlated.Among the carbon components,O-CH3/NCH,aromatic C-O and O-alkyl C/alkyl C were significantly positively correlated with GI,while anomeric C was significantly negatively correlated.Furthermore,among the top 10 positive and five negative correlation compounds,lipids and lipid-like molecules[armexifolin,boviquinone 4,3-methyladipic acid,lxocarpalactone A,monic acid,DG(20:1(11Z)/18:4(6Z,9Z,12Z,15Z)/0:0),and brassinolide]and organic acids and derivatives(N-acetylglutamic acid,8-hydroxy-5,6-octadienoic acid,acetyl-L-tyrosine,and hydroxyprolyl-methionine)in humic acids might be crucial active components for improving tomato seed germination.The results provided direct evidence for the identification of bioactive molecules of humic acids,and a scientific basis for the precise utilization of bioactive molecular components of humic acids in sustainable agricultural development.
文摘Anthropogenic pressures, climate change, and certain factors, including seed coat dormancy, hinder the natural regeneration of some tree species such as Irvingia gabonensis. This study, conducted in the city of Soubre, aimed to evaluate the germination potential of Irvingia gabonensis seeds and investigate the growth of seedlings from various treatments within an agroforestry perspective. The methodology involved subjecting seeds to fourteen different pre-treatments. These included seeds 1) treated with water at 100˚C;2) soaked in tap water for varying periods (days);3) treated with concentrated sulphuric acid at 96%;4) soaked directly in GA3 at different concentrations;5) scarified and soaked in GA3;and 6) untreated seeds, which served as controls. For the growth tests, the growth of seedlings from seeds treated with GA3 was compared with seedlings from control and scarified seed lots. The most satisfactory results were observed with scarified seeds soaked in gibberellin solution at 0.5 and 2 mg/L, yielding 46.66% and 56.66% germination, respectively. However, the best result was obtained with seeds soaked in GA3 at a concentration of 2 mg/L (50%). The findings showed that control seedlings exhibited similar growth to those derived from GA3-treated seeds.
基金financially supported by a Kasetsart University 72 Year Anniversary Graduate Scholarship, from the Graduate School, Kasetsart University, Thailand
文摘Low germination and vigor of rice seed associated with dry-seed broadcasting are common problems encountered by rice growers.The objectives of this study were to evaluate the role of potassium nitrate(KNO3)on the pattern of seed imbibition and to determine the effect of seed priming with KNO3 on the germination percentage,speed and uniformity of germination in rice seed.Experiment 1 compared the patterns of seed imbibition of six concentrations of KNO3(0,0.25,0.50,1.00,1.50,and 2.00%)in two rice cultivars-KDML105 and RD15.The results showed that soaking rice seed in KNO3 at higher concentrations could delay the imbibition time.The higher concentrations of KNO3 delayed the imbibition time of rice seed and took a longer time to reach the end of phases 1 and 2 compared to the lower concentrations.The patterns of seed imbibition using distilled water of both rice cultivars(KDML105 and RD15)were quite similar,but with different concentrations of KNO3,the imbibition time taken to reach the end of phases 1 and 2 was slightly postponed in KDML105 suggesting that different rice cultivars may need different imbibition times for soaking seed in the priming process.Experiment 2 evaluated the effects of seed priming with 1.0 and 2.0%KNO3 at different imbibition times.It was found that priming with 1.0%KNO3 showed better seed germination than priming with 2.0%KNO3 and seed priming with 1.0%KNO3 at the imbibition time of early phase 2(or 28 h for KDML105)improved seed germination and increased both the speed and uniformity of seed germination.The results of this study show promise for the use of priming with 1.0%KNO3 soaked until early phase 2 of seed imbibition for improving the seed germination and vigor of rice in dry seed broadcasting.
基金Supported by Research Project of Maize Research Institute of Shanxi Academy of Agricultural Sciences(SGG2014-3)~~
文摘[Objective] This study aimed to determine the optimum ethyl methane sulfonate(EMS) concentration for germination of tarary buckwheat seeds so as to lay a solid foundation for obtaining excellent traits of tarary buckwheat and breeding new varieties that meet the requirements by EMS mutation breeding. [Method] The seeds of Jinqiaomai No.4, a local tarary buckwheat variety [Fagopyrum tataricum(L.) Gaertn] in Shanxi Province, were used as the material. They were mutagenized by different concentrations(0.3%, 0.5%, 0.7%, 1.0%, 1.5%, 1.7%) of EMS for different times(4, 8, 12 h). Then the germination rate and germination vigor were analyzed. [Result] With the increase of EMS mutagenic agent concentration, the germination vigor, relative germination vigor, germination rate and relative germination rate are all trended to be decreased. When the EMS concentrations ranged from 0.3%to 1.0%, there were no significant differences between treatment and control groups(P〉0.05). When the EMS concentrations were 1.5% and 1.7%, significant differences were shown between treatment and control groups(P〈0.01). The 4 and 8 h treatment of EMS all had no significant effects on germination rate and relative germination rate of Jinqiaomai No.4, but the 12 h treatment of EMS showed significant effects. Among the three treatment times, there were still no significant differences in germination vigor and relative germination vigor between treatment and control groups. [Conclusion] The optimum median lethal dose and treatment time of EMS for mutagenizing Jinqiaomai No.4 were 1.7% and 12 h, respectively.
基金Supported by Key Scientific and Technological Project of Shanxi Province(20140311005-3)~~
文摘[Objective] This study aimed to investigate the effects of induced concen- tration and time of EMS on seed germination of common buckwheat. [Method] The seeds of Jinqiaomai No.3, a common buckwheat cultivar, were used as the test material, and their germination was induced by different concentrations of EMS un- der different induced times. The germination rate, germination vigor, relative germi- nation rate and relative germination vigor of Jinqiaomai No.3 were measured. [Re- sult] With increased induced concentration and time of EMS, the germination rate, germination vigor, relative germination rate and relative germination vigor of Jinqiao- mai No.3 were all trended to be decreased. For Jinqiaomai No.3, the optima in- duced concentration and time of EMS was 1.0% and 4 h, respectively, and the lethal concentration was 1.7%. [Conclusion] The induced concentration and time of EMS all showed significant effects on seed germination of Jinqiaomai No.3.
文摘Revegetation of disturbed land, particularly in arid environment, is often hindered by low seedling establishment. Information on seed biology and germination cues of valuable species is lacking. We investigated seed germination of two Acacia species (Acacia tortilis (Forsk.) Hayne and Acacia oerfota (Forssk) schwein/), required for nitrogen fixation and rehabilitation of arid and semi-arid areas.(four pregermination seed treatments were applied in order to find the best treatment in germinating acacia species. The medium was L2 and three replicates were used. Seeds pretreated with sand paper and also with H2SO4 and then H2O2 had the highest germination percentage in both species. The lowest germination percentage resulted from soaking seeds in water for 48 h followed by soaking in H2SO4 for A. oerfota and from soaking in water for 24 h for A. tortilis. Because the use of sand paper is difficult and time consuming, we recommend pretreatment ofA. tortilis and A. oerfota seeds with H2SO4 and H2O2 before planting. Our study results are significant for conservation agencies with an interest in optimizing germination in arid zones for rehabilitation and reforestation.
基金Supported by the International Science and Technology Cooperation Program(2008DFA31820)~~
文摘[Objective] The aim of this study was to provide the theoretical basis for screening and utilizing salt-tolerant tomato varieties as well as for cultivating salt-resistance.[Method] Salinity tolerance of tomato during seed germination under simple salt sodium chloride and double salt calcium nitrate or sodium chloride stress were studied by Petri dish culturing.[Result] As the two kinds salt concentration increased,the germination regularity,the germination rate,the germination index and the growing vigor index of tomato seedlings decreased,but the germination losing rate increased.When salt concentration was from 0.2% to 0.4%,there was little difference among all indexes under two kinds of salt stress.However,when salt concentration was from 0.6% to 1.0%,the difference among all indexes under two kinds of salt stress was significant.[Conclusion] Salinity tolerance of tomato seeds under double salt calcium nitrate or sodium chloride stress was higher than that under simple salt sodium chloride stress.
文摘Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3).