Aspheric lens can eliminate spherical aberra- tions, coma, astigmatism, field distortions, and other adverse factors. This type of lens can also reduce the loss of light energy and obtain high-quality images and optic...Aspheric lens can eliminate spherical aberra- tions, coma, astigmatism, field distortions, and other adverse factors. This type of lens can also reduce the loss of light energy and obtain high-quality images and optical characteristics. The demand for aspheric lens has increased in recent years because of its advantageous use in the electronics industry, particularly for compact, portable devices and high-performance products. As an advanced manufacturing technology, the glass lens molding process has been recognized as a low-cost and high-efficiency manufacturing technology for machining small-diameter aspheric lens for industrial production. However, the residual stress and profile deviation of the glass lens are greatly affected by various key technologies for glass lens molding, including glass and mold-die material forming, mold-die machining, and lens molding. These key technical factors, which affect the quality of the glass lens molding process, are systematically discussed and reviewed to solve the existing technical bottlenecks and problems, as well as to predict the potential applicability of glass lens molding in the future.展开更多
Analysis of glass homogeneity using the attaching interferometric data model neglects body distribution.To improve analysis accuracy,we establish the three-dimensional gradient index(GRIN) model of glass index by anal...Analysis of glass homogeneity using the attaching interferometric data model neglects body distribution.To improve analysis accuracy,we establish the three-dimensional gradient index(GRIN) model of glass index by analyzing fused silica homogeneity distribution in two perpendicular measurement directions.Using the GRIN model,a lithography projection lens with a numerical aperture of 0.75 is analyzed.Root mean square wavefront aberration deteriorates from 0.9 to 9.65 nm and then improves to 5.9 nm after clocking.展开更多
文摘Aspheric lens can eliminate spherical aberra- tions, coma, astigmatism, field distortions, and other adverse factors. This type of lens can also reduce the loss of light energy and obtain high-quality images and optical characteristics. The demand for aspheric lens has increased in recent years because of its advantageous use in the electronics industry, particularly for compact, portable devices and high-performance products. As an advanced manufacturing technology, the glass lens molding process has been recognized as a low-cost and high-efficiency manufacturing technology for machining small-diameter aspheric lens for industrial production. However, the residual stress and profile deviation of the glass lens are greatly affected by various key technologies for glass lens molding, including glass and mold-die material forming, mold-die machining, and lens molding. These key technical factors, which affect the quality of the glass lens molding process, are systematically discussed and reviewed to solve the existing technical bottlenecks and problems, as well as to predict the potential applicability of glass lens molding in the future.
基金supported by the Major National Science and Technology Project of China(No.2009ZX02205)
文摘Analysis of glass homogeneity using the attaching interferometric data model neglects body distribution.To improve analysis accuracy,we establish the three-dimensional gradient index(GRIN) model of glass index by analyzing fused silica homogeneity distribution in two perpendicular measurement directions.Using the GRIN model,a lithography projection lens with a numerical aperture of 0.75 is analyzed.Root mean square wavefront aberration deteriorates from 0.9 to 9.65 nm and then improves to 5.9 nm after clocking.