随着宽禁带功率半导体器件的广泛使用,更高开关频率的双有源桥(dual active bridge,DAB)变换器带来了更大的开关损耗,对于软开关技术提出更高要求。为了进一步拓展零电压开通(zero-voltage switching,ZVS)范围,文中对ZVS精确模型和传统...随着宽禁带功率半导体器件的广泛使用,更高开关频率的双有源桥(dual active bridge,DAB)变换器带来了更大的开关损耗,对于软开关技术提出更高要求。为了进一步拓展零电压开通(zero-voltage switching,ZVS)范围,文中对ZVS精确模型和传统电感电流全局最优条件方法进行分析,提出一种结合励磁电流运行的移相调制策略,该策略可实现DAB变换器全功率范围内所有开关管的ZVS运行(8-ZVS运行)。在考虑开关管非线性特性和死区时间限制基础上得到更精确的ZVS模型,并推导引入励磁电流的ZVS模型。此外,所提出的控制方案具有无缝模式转换的特点,电感电流的有效值也可以达到准最佳状态。最后,搭建6kW/150kHz的高频DAB变换器样机以验证模型有效性。实验结果表明,该控制算法可以在任意模式和工况下实现8-ZVS运行,从而提升系统在轻载和中载工况下运行效率。展开更多
A novel scheme of photonic aided vector millimeter-wave(mm-wave)signal generation without a digital-to-analog converter(DAC)is proposed.Based on our scheme,a 20 Gb/s 4-ary quadrature amplitude modulation(4-QAM)mm-wave...A novel scheme of photonic aided vector millimeter-wave(mm-wave)signal generation without a digital-to-analog converter(DAC)is proposed.Based on our scheme,a 20 Gb/s 4-ary quadrature amplitude modulation(4-QAM)mm-wave signal is generated without using a DAC.The experiment results demonstrate that the bit error rate(BER)of 20 Gb/s 4-QAM mmwave signal can reach below the hard-decision forward-error-correction threshold after a delivery over 1 m wireless distance.Because the DAC is not required,it can reduce the system cost.Besides,by using photonic technology,the system is easily integrated to create large-scale production and application in high-speed optical communication.展开更多
This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits ...This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits of increased power generation while ad-dressing the challenges associated with uneven shadowing.The proposed methodology focuses on the implementation of improved sliding-mode control technique for efficient global maximum power point tracking.Sliding-mode control is known for its robustness in the presence of uncertainties and disturbances,making it suitable for dynamic and complex systems such as PV arrays.This work employs a comprehensive simulation framework to comment on the performance of the suggested improved sliding-mode control strategy in uneven shadowing scenarios.Comparative analysis has been done to show the better effectiveness of the suggested method than the traditional control strategies.The results demonstrate a remarkable enhancement in the tracking accuracy of the global maximum power point,leading to enhanced energy-harvesting capabilities under challenging environmental conditions.Furthermore,the proposed approach exhibits robustness and adaptability in mitigating the effect of shading on the PV array,thereby increasing overall system efficiency.This research contributes valuable insights into the development of advanced control strategies for PV arrays,particularly in the context of triple-series–parallel ladder configurations operating under uneven shadowing conditions.Under short narrow shading conditions,the improved sliding-mode control method tracks the maximum power better compared with perturb&observe at 20.68%,incremental-conductance at 68.78%,fuzzy incremental-conductance at 19.8%,and constant-velocity sliding-mode control at 1.25%.The improved sliding-mode control method has 60%less chattering than constant-velocity sliding-mode control under shading conditions.展开更多
This paper presents a 16-bit 2 GSPS digital-to-analog converter (DAC) in 0.18/zm CMOS technology. This DAC is implemented using time division multiplex access system architecture in the digital domain. The input dat...This paper presents a 16-bit 2 GSPS digital-to-analog converter (DAC) in 0.18/zm CMOS technology. This DAC is implemented using time division multiplex access system architecture in the digital domain. The input data is received with a two-channel LVDS interface. The DLL technology is introduced to meet the timing requirements between phases of the LVDS data and the data sampling clock. A FIFO is designed to absorb the phase difference between the data clock and DAC system clock. A delay controller is integrated to adjust the phase relationship between the high speed digital clock and analog clock, obtaining a sampling rate of 2 GSPS. The current source mismatch at higher bits is calibrated in the digital domain. Test results show that the DAC achieves 74.02 dBC SFDR at analog output of 36 MHz, and DNL less than ±2.1 LSB & INL less than ±4.3 LSB after the chip is calibrated.展开更多
This paper presents the design considerations and implementation of an area-efficient interpolator suitable for a delta-sigma D/A converter. In an effort to reduce the area and design complexity, a method for designin...This paper presents the design considerations and implementation of an area-efficient interpolator suitable for a delta-sigma D/A converter. In an effort to reduce the area and design complexity, a method for designing an FIR filter as a tapped cascaded interconnection of identical subfilters is modified. The proposed subfilter structure further minimizes the arithmetic number. Experimental results show that the proposed interpolator achieves the design specification,exhibiting high performance and hardware efficiency,and also has good noise rejection capability. The interpolation filter can be applied to a delta-sigma DAC and is fully functional.展开更多
远海风电场具有更加丰富和稳定的风能资源,是未来风电发展的主要趋势,目前远海风电主要通过柔性直流系统并网。整流侧采用二极管不控整流单元(diode rectifier unit, DRU)具有明显的经济优势和发展前景,是学术界和工业界的研究热点。为...远海风电场具有更加丰富和稳定的风能资源,是未来风电发展的主要趋势,目前远海风电主要通过柔性直流系统并网。整流侧采用二极管不控整流单元(diode rectifier unit, DRU)具有明显的经济优势和发展前景,是学术界和工业界的研究热点。为了进一步提高远海风电送出系统的经济性,以整流侧采用DRU的高压直流输电系统为基本拓扑,提出采用中频不控整流直流系统的远海风电送出方案,通过把风电场交流电网的运行频率选为100~400 Hz,可以大幅度减小升压变压器和交流滤波器的体积和重量。同时,提出适用于中频不控整流直流系统的风电机组控制策略,其中,机侧换流器采用定直流电压控制,网侧换流器在全局统一参考坐标系下同时实现定功率控制和定交流侧电压控制。最后,通过PSCAD/EMTDC进行算例仿真,对所提方案的可行性进行验证。展开更多
文摘随着宽禁带功率半导体器件的广泛使用,更高开关频率的双有源桥(dual active bridge,DAB)变换器带来了更大的开关损耗,对于软开关技术提出更高要求。为了进一步拓展零电压开通(zero-voltage switching,ZVS)范围,文中对ZVS精确模型和传统电感电流全局最优条件方法进行分析,提出一种结合励磁电流运行的移相调制策略,该策略可实现DAB变换器全功率范围内所有开关管的ZVS运行(8-ZVS运行)。在考虑开关管非线性特性和死区时间限制基础上得到更精确的ZVS模型,并推导引入励磁电流的ZVS模型。此外,所提出的控制方案具有无缝模式转换的特点,电感电流的有效值也可以达到准最佳状态。最后,搭建6kW/150kHz的高频DAB变换器样机以验证模型有效性。实验结果表明,该控制算法可以在任意模式和工况下实现8-ZVS运行,从而提升系统在轻载和中载工况下运行效率。
基金partially supported by the National Natural Science Foundation of China(Nos.61935005,61922025,61527801,61675048,61720106015,61835002,and 61805043)。
文摘A novel scheme of photonic aided vector millimeter-wave(mm-wave)signal generation without a digital-to-analog converter(DAC)is proposed.Based on our scheme,a 20 Gb/s 4-ary quadrature amplitude modulation(4-QAM)mm-wave signal is generated without using a DAC.The experiment results demonstrate that the bit error rate(BER)of 20 Gb/s 4-QAM mmwave signal can reach below the hard-decision forward-error-correction threshold after a delivery over 1 m wireless distance.Because the DAC is not required,it can reduce the system cost.Besides,by using photonic technology,the system is easily integrated to create large-scale production and application in high-speed optical communication.
文摘This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits of increased power generation while ad-dressing the challenges associated with uneven shadowing.The proposed methodology focuses on the implementation of improved sliding-mode control technique for efficient global maximum power point tracking.Sliding-mode control is known for its robustness in the presence of uncertainties and disturbances,making it suitable for dynamic and complex systems such as PV arrays.This work employs a comprehensive simulation framework to comment on the performance of the suggested improved sliding-mode control strategy in uneven shadowing scenarios.Comparative analysis has been done to show the better effectiveness of the suggested method than the traditional control strategies.The results demonstrate a remarkable enhancement in the tracking accuracy of the global maximum power point,leading to enhanced energy-harvesting capabilities under challenging environmental conditions.Furthermore,the proposed approach exhibits robustness and adaptability in mitigating the effect of shading on the PV array,thereby increasing overall system efficiency.This research contributes valuable insights into the development of advanced control strategies for PV arrays,particularly in the context of triple-series–parallel ladder configurations operating under uneven shadowing conditions.Under short narrow shading conditions,the improved sliding-mode control method tracks the maximum power better compared with perturb&observe at 20.68%,incremental-conductance at 68.78%,fuzzy incremental-conductance at 19.8%,and constant-velocity sliding-mode control at 1.25%.The improved sliding-mode control method has 60%less chattering than constant-velocity sliding-mode control under shading conditions.
文摘This paper presents a 16-bit 2 GSPS digital-to-analog converter (DAC) in 0.18/zm CMOS technology. This DAC is implemented using time division multiplex access system architecture in the digital domain. The input data is received with a two-channel LVDS interface. The DLL technology is introduced to meet the timing requirements between phases of the LVDS data and the data sampling clock. A FIFO is designed to absorb the phase difference between the data clock and DAC system clock. A delay controller is integrated to adjust the phase relationship between the high speed digital clock and analog clock, obtaining a sampling rate of 2 GSPS. The current source mismatch at higher bits is calibrated in the digital domain. Test results show that the DAC achieves 74.02 dBC SFDR at analog output of 36 MHz, and DNL less than ±2.1 LSB & INL less than ±4.3 LSB after the chip is calibrated.
文摘This paper presents the design considerations and implementation of an area-efficient interpolator suitable for a delta-sigma D/A converter. In an effort to reduce the area and design complexity, a method for designing an FIR filter as a tapped cascaded interconnection of identical subfilters is modified. The proposed subfilter structure further minimizes the arithmetic number. Experimental results show that the proposed interpolator achieves the design specification,exhibiting high performance and hardware efficiency,and also has good noise rejection capability. The interpolation filter can be applied to a delta-sigma DAC and is fully functional.
文摘远海风电场具有更加丰富和稳定的风能资源,是未来风电发展的主要趋势,目前远海风电主要通过柔性直流系统并网。整流侧采用二极管不控整流单元(diode rectifier unit, DRU)具有明显的经济优势和发展前景,是学术界和工业界的研究热点。为了进一步提高远海风电送出系统的经济性,以整流侧采用DRU的高压直流输电系统为基本拓扑,提出采用中频不控整流直流系统的远海风电送出方案,通过把风电场交流电网的运行频率选为100~400 Hz,可以大幅度减小升压变压器和交流滤波器的体积和重量。同时,提出适用于中频不控整流直流系统的风电机组控制策略,其中,机侧换流器采用定直流电压控制,网侧换流器在全局统一参考坐标系下同时实现定功率控制和定交流侧电压控制。最后,通过PSCAD/EMTDC进行算例仿真,对所提方案的可行性进行验证。