We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation meas...We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation measurement configuration,without requiring a specific form of the incident pulse function.A rigorous solution of the nonlinear coupled wave equation is obtained in the time domain and expressed in a general analytical form.The global model fully accounts for the nonlinear interaction and propagation effects within nonlinear crystals,which are not captured by the classical local model.To assess the performance of the global model compared to the classic local model,we investigate the autocorrelation signals obtained from both models for different incident pulse waveforms and different full-widthes at half-maximum(FWHMs).When the incident pulse waveform is Lorentzian with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 399.9 fs,while the classic local model predicts an FWHM of 331.4 fs.The difference between the two models is 68.6 fs,corresponding to an error of 17.2%.Similarly,for a sech-type incident pulse with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 343.9 fs,while the local model predicts an FWHM of 308.8 fs.The difference between the two models is 35.1 fs,with an error of 10.2%.We further examine the behavior of the models for Lorentzian pulses with FWHMs of 100 fs,200 fs and 500 fs.The differences between the global and local models are 17.1 fs,68.6 fs and 86.0 fs,respectively,with errors approximately around 17%.These comparative analyses clearly demonstrate the superior accuracy of the global model in intensity autocorrelation modeling.展开更多
At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this met...At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this method only if there is a geoid or quasi-geoid height model available.This paper proposes the methodology for local correction of the heights of high-order global geoid models such as EGM08,EIGEN-6C4,GECO,and XGM2019e_2159.This methodology was tested in different areas of the research field,covering various relief forms.The dependence of the change in corrected height accuracy on the input data was analyzed,and the correction was also conducted for model heights in three tidal systems:"tide free","mean tide",and"zero tide".The results show that the heights of EIGEN-6C4 model can be corrected with an accuracy of up to 1 cm for flat and foothill terrains with the dimensionality of 1°×1°,2°×2°,and 3°×3°.The EGM08 model presents an almost identical result.The EIGEN-6C4 model is best suited for mountainous relief and provides an accuracy of 1.5 cm on the 1°×1°area.The height correction accuracy of GECO and XGM2019e_2159 models is slightly poor,which has fuzziness in terms of numerical fluctuation.展开更多
Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far o...Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China.展开更多
In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the ...In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas.展开更多
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana...Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.展开更多
The North East China Transect (NECT) is an exemplary region of landmass running along the line of 43°30′ North Latitude and caught between 112° and 130°30′ East Longtitude, and is being sampled by the...The North East China Transect (NECT) is an exemplary region of landmass running along the line of 43°30′ North Latitude and caught between 112° and 130°30′ East Longtitude, and is being sampled by the International Geosphere-Biosphere Program (IGBP) for today’s study on global change. So far, it has already been listed in the first set of IGBP-sponsored transects, becoming a key theatre and "hot spot" for probing terrestrial ecosystems. In terms of biota, the nearly 1,600-kilometre-long tract is located in a mid-latitude zone, featuring a vegetational transition from a temperate timberland of evergreen coniferous forests and broadleaved deciduous forests to a mild-temperate steppe. According to the norms of biome types, it consists of three subzones: meadow steppe, typical steppe and desert steppe in a continuous east-to-west spatial sequence. There are four ecological stations supported by a great number of permanent samples, long-term plots and an enormous build-up of experimental data along展开更多
Radio frequency capacitively coupled plasmas(RF CCPs)play a pivotal role in various applications in etching and deposition processes on a microscopic scale in semiconductor manufacturing.In the discharge process,the p...Radio frequency capacitively coupled plasmas(RF CCPs)play a pivotal role in various applications in etching and deposition processes on a microscopic scale in semiconductor manufacturing.In the discharge process,the plasma series resonance(PSR)effect is easily observed in electrically asymmetric and geometrically asymmetric discharges,which could largely influence the power absorption,ionization rate,etc.In this work,the PSR effect arising from geometrically and electrically asymmetric discharge in argon-oxygen mixture gas is mainly investigated by using a plasma equivalent circuit model coupled with a global model.At relatively low pressures,as Ar content(α)increases,the inductance of the bulk is weakened,which leads to a more obvious PSR phenomenon and a higher resonance frequency(ω_(psr)).When the Ar content is fixed,varying the pressure and gap distance could also have different effects on the PSR effect.With the increase of the pressure,the PSR frequency shifts towards the higher order,but in the case of much higher pressure,the PSR oscillation would be strongly damped by frequent electron-neutral collisions.With the increase of the gap distance,the PSR frequency becomes lower.In addition,electrically asymmetric waveforms applied to a geometrically asymmetric chamber may weaken or enhance the asymmetry of the discharge and regulate the PSR effect.In this work,the Ar/O_(2) electronegative mixture gas is introduced in a capacitive discharge to study the PSR effect under geometric asymmetry effect and electrical asymmetry effect,which can provide necessary guidance in laboratory research and current applications.展开更多
In this work, gravity anomalies from the XGM2016 global gravity model are used to study the basement of the Yaounde, Yoko area. The aim is to locate the characteristic tectonic faults and to characterize the geometry ...In this work, gravity anomalies from the XGM2016 global gravity model are used to study the basement of the Yaounde, Yoko area. The aim is to locate the characteristic tectonic faults and to characterize the geometry of the basement of these localities in order to improve the knowledge of the structural and tectonic basement of the study area. Numerical filters (vertical gradient, horizontal gradient, upward continuation) and Euler deconvolution were applied to the gravity anomalies respectively for qualitative and quantitative analysis. The results of the qualitative analysis allowed us to establish the lineament map of the study area;ranging from 0 to 35 km depth. For the quantitative analysis, the work is done in two parts: 1) highlighting the distribution of depths of geological structures in the basement of the study area;2) 2D1/2 modeling of geological structures to highlight the geometry of the basement of Yaounde, Yoko area. Thus, from five suitably selected profiles, the established models reveal the presence of eight blocks of geological structures of different densities and analyze their implications on the Sanaga Fault. Moreover, the models show that the positive anomalies characteristics for the Sanaga Fault reflect the anomalous character due to the strong dominance of the shale intrusion in the basement.展开更多
This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula...This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.展开更多
The effect of ionospheric delay on the ground-based augmentation system under normal conditions can be mitigated by determining the value of the nominal ionospheric gradient(σvig).The nominal ionospheric gradient is ...The effect of ionospheric delay on the ground-based augmentation system under normal conditions can be mitigated by determining the value of the nominal ionospheric gradient(σvig).The nominal ionospheric gradient is generally obtained from Continuously Operating Reference Stations data by using the spatial single-difference method(mixed-pair,station-pair,or satellite-pair)or the temporal single-difference method(time-step).The time-step method uses only a single receiver,but it still contains ionospheric temporal variations.We introduce a corrected time-step method using a fixed-ionospheric pierce point from the geostationary equatorial orbit satellite and test it through simulations based on the global ionospheric model.We also investigate the effect of satellite paths on the corrected time-step method in the region of the equator,which tends to be in a more north–south direction and to have less coverage for the east–west ionospheric gradient.This study also addresses the limitations of temporal variation correction coverage and recommends using only the correction from self-observations.All processes are developed under simulations because observational data are still difficult to obtain.Our findings demonstrate that the corrected time-step method yieldsσvig values consistent with other approaches.展开更多
Climate warming profoundly affects hydrological changes,agricultural production,and human society.Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting.The Chinese Tianshan M...Climate warming profoundly affects hydrological changes,agricultural production,and human society.Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting.The Chinese Tianshan Mountains(CTM)have a high climate sensitivity,rendering the region particularly vulnerable to the effects of climate warming.In this study,we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset(1961-2014)and 24 global climate models(GCMs)of the Coupled Model Intercomparison Project Phase 6(CMIP6)to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale.Based on this,we conducted a systematic review of the interannual trends,dry-wet transitions(based on the standardized precipitation index(SPI)),and spatial distribution patterns of climate change in the CTM during 1961-2014.We further projected future temperature and precipitation changes over three terms(near-term(2021-2040),mid-term(2041-2060),and long-term(2081-2100))relative to the historical period(1961-2014)under four shared socio-economic pathway(SSP)scenarios(i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5).It was found that the CTM had experienced significant warming and wetting from 1961 to 2014,and will also experience warming in the future(2021-2100).Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble(MME)from the CMIP6 GCMs.The MME simulation results indicated an apparent wetting in 2008,which occurred later than the wetting observed from the CN05.1 in 1989.The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM.Warming and wetting are more rapid in the northern part of the CTM.By the end of the 21st century,all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple dry-wet transitions.However,the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future,so the nature of the drought in the CTM will not change at all.Additionally,the projected summer precipitation shows negative correlation with the radiative forcing.This study holds practical implications for the awareness of climate change and subsequent research in the CTM.展开更多
ABSTRACT The lAP Dynamic Global Vegetation Model (IAP-DGVM) has been developed to simulate the distribution and structure of global vegetation within the framework of Earth System Models. It incorporates our group...ABSTRACT The lAP Dynamic Global Vegetation Model (IAP-DGVM) has been developed to simulate the distribution and structure of global vegetation within the framework of Earth System Models. It incorporates our group's recent developments of major model components such as the shrub sub-model, establishment and competition parameterization schemes, and a process-based fire parameterization of intermediate complexity. The model has 12 plant functional types, including seven tree, two shrub, and three grass types, plus bare soil. Different PFTs are allowed to coexist within a grid cell, and their state variables are updated by various governing equations describing vegetation processes from fine-scale biogeophysics and biogeochemistry, to individual and population dynamics, to large-scale biogeography. Environmental disturbance due to fire not only affects regional vegetation competition, but also influences atmospheric chemistry and aerosol emissions. Simulations under observed atmospheric conditions showed that the model can correctly reproduce the global distribution of trees, shrubs, grasses, and bare soil. The simulated global dominant vegetation types reproduce the transition from forest to grassland (savanna) in the tropical region, and from forest to shrubland in the boreal region, but overestimate the region of temperate forest.展开更多
The capability of an improved Dynamic Global Vegetation Model (DGVM) in reproducing the impact of climate on the terrestrial ecosystem is evaluated. The new model incorporates the Community Land Model- DGVM (CLM3.0...The capability of an improved Dynamic Global Vegetation Model (DGVM) in reproducing the impact of climate on the terrestrial ecosystem is evaluated. The new model incorporates the Community Land Model- DGVM (CLM3.0-DGVM) with a submodel for temperate and boreal shrubs, as well as other revisions such as the "two-leaf" scheme for photosynthesis and the definition of fractional coverage of plant functional types (PFTs). Results show that the revised model may correctly reproduce the global distribution of temperate and boreal shrubs, and improves the model performance with more realistic distribution of di?erent vege- tation types. The revised model also correctly reproduces the zonal distributions of vegetation types. In reproducing the dependence of the vegetation distribution on climate conditions, the model shows that the dominant regions for trees, grasses, shrubs, and bare soil are clearly separated by a climate index derived from mean annual precipitation and temperature, in good agreement with the CLM4 surface data. The dominant plant functional type mapping to a two dimensional parameter space of mean annual temperature and precipitation also qualitatively agrees with the results from observations and theoretical ecology studies.展开更多
Heilongjiang province is the largest forest zone in China and the forest coverage rate is 46%. Forests of Heilongjiang province play an important role in the forest ecosystem of China. In this study we investi- gated ...Heilongjiang province is the largest forest zone in China and the forest coverage rate is 46%. Forests of Heilongjiang province play an important role in the forest ecosystem of China. In this study we investi- gated the spatial distribution of forest carbon storage in Heilongjiang province using 3083 plots sampled in 2010. We attempted to fit two global models, ordinary least squares model (OLS), linear mixed model (LMM), and a local model, geographically weighted regression model (GWR), to the relationship between forest carbon content and stand, environment, and climate factors. Five predictors significantly affected forest carbon storage and spatial distribution, viz. average diameter of stand (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope) and the product of precipitation and temperature (Rain Temp). The GWR model outperformed the two global models in both model fitting and prediction because it successfully reduced both spatial auto- correlation and heterogeneity in model residuals. More importantly, the GWR model provided localized model coefficients for each location in the study area, which allowed us to evaluate the influences of local stand conditions and topographic features on tree and stand growth, and forest carbon stock. It also helped us to better understand the impacts of silvi- cultural and management activities on the amount and changes of forest carbon storage across the province. The detailed information can be readily incorporated with the mapping ability of GIS software to provide excellent tools for assessing the distribution and dynamics of the for- est-carbon stock in the next few years.展开更多
The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, ...The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, within an integrated system, has been increasing. In this paper, some numerical schemes and a higher resolution soil texture dataset were employed to improve the Sheffield Dynamic Global Vegetation Model (SDGVM). Using eddy covariance-based measurements, we then tested the standard version of the SDGVM and the modified version of the SDGVM. Detailed observations of daily carbon and water fluxes made at the upland oak forest on the Walker Branch Watershed in Tennessee, USA offered a unique opportunity for these comparisons. The results revealed that the modified version of the SDGVM did a reasonable job of simulating the carbon and water flux and the variation of soil water content (SWC). However, at the end of the growing season, it failed to simulate the effect of the limitations on the soil respiration dynamics and as a result underestimated this respiration. It was also noted that the modified version overestimated the increase in the SWC following summer rainfall, which was attributed to an inadequate representation of the ground water and thermal cycle.展开更多
In the past several decades, dynamic global vegetation models(DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmosp...In the past several decades, dynamic global vegetation models(DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmospheric Physics, a new version of DGVM(IAP-DGVM) has been developed and coupled to the Common Land Model(CoLM) within the framework of the Chinese Academy of Sciences' Earth System Model(CAS-ESM). This work reports the performance of IAP-DGVM through comparisons with that of the default DGVM of CoLM(CoLM-DGVM) and observations. With respect to CoLMDGVM, IAP-DGVM simulated fewer tropical trees, more "needleleaf evergreen boreal tree" and "broadleaf deciduous boreal shrub", and a better representation of grasses. These contributed to a more realistic vegetation distribution in IAP-DGVM,including spatial patterns, total areas, and compositions. Moreover, IAP-DGVM also produced more accurate carbon fluxes than CoLM-DGVM when compared with observational estimates. Gross primary productivity and net primary production in IAP-DGVM were in better agreement with observations than those of CoLM-DGVM, and the tropical pattern of fire carbon emissions in IAP-DGVM was much more consistent with the observation than that in CoLM-DGVM. The leaf area index simulated by IAP-DGVM was closer to the observation than that of CoLM-DGVM; however, both simulated values about twice as large as in the observation. This evaluation provides valuable information for the application of CAS-ESM, as well as for other model communities in terms of a comparative benchmark.展开更多
A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the ...A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process, varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs.展开更多
In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertiliza- tion, seed production, germination, and the growth of tree seedlings. It determines not only the pop...In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertiliza- tion, seed production, germination, and the growth of tree seedlings. It determines not only the population densities but also other important ecosystem structural variables. In current DGVMs, establishments of woody plant functional types (PFTs) are assumed to be either the same in the same grid cell, or largely stochastic. We investigated the uncertainties in the competition of establishment among coexisting woody PFTs from three aspects: the dependence of PFT establishments on vegetation states; background establishment; and relative establishment potentials of different PFTs. Sensitivity experi- ments showed that the dependence of establishment rate on the fractional coverage of a PFT favored the dominant PFT by increasing its share in establishment. While a small background establishment rate had little impact on equilibrium states of the ecosystem, it did change the timescale required for the establishment of alien species in pre-existing forest due to their disadvantage in seed competition during the early stage of invasion. Meanwhile, establishment purely fiom background (the scheme commonly used in current DGVMs) led to inconsistent behavior in response to the change in PFT specification (e.g., number of PFTs and their specification). Furthermore, the results also indicated that trade-off between irtdividual growth and reproduction/colonization has significant influences on the competition of establishment. Hence, further development of es- tablishment parameterization in DGVMs is essential in reducing the uncertainties in simulations of both ecosystem structures and successions.展开更多
To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid covering the area from 20°S to 50°N and from 99° to 150°E is...To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid covering the area from 20°S to 50°N and from 99° to 150°E is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current.From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 m has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.展开更多
On the basis of the newly released International Terrestrial Reference Frame(ITRF2008) by the International Earth Rotation Service (IERS), a new global plate model ITRF2008 plate for the major plates is establishe...On the basis of the newly released International Terrestrial Reference Frame(ITRF2008) by the International Earth Rotation Service (IERS), a new global plate model ITRF2008 plate for the major plates is established. This ITRF2008-derived model is analyzed in comparison with NNR-NUVEL1A model, which is mainly based on geological and geophysical data. The Eurasia and Paeifi6 plates display obvious differences in terms of the velocity fields derived from the two plate motion models. Plate acceleration is also introduced to characterize the differences of the two velocity fields which obtained from ITRF2008-plate and NNR-NUVEL1A models for major individual plates. The results show that the Africa, South America and Eurasia plates are undergoing acceleration, while the North America and Australia plates are in the state of deceleration motion展开更多
基金Project supported by the Science and Technology Project of Guangdong(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.11974119)+1 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)the National Key R&D Program of China(Grant No.2018YFA0306200)。
文摘We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation measurement configuration,without requiring a specific form of the incident pulse function.A rigorous solution of the nonlinear coupled wave equation is obtained in the time domain and expressed in a general analytical form.The global model fully accounts for the nonlinear interaction and propagation effects within nonlinear crystals,which are not captured by the classical local model.To assess the performance of the global model compared to the classic local model,we investigate the autocorrelation signals obtained from both models for different incident pulse waveforms and different full-widthes at half-maximum(FWHMs).When the incident pulse waveform is Lorentzian with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 399.9 fs,while the classic local model predicts an FWHM of 331.4 fs.The difference between the two models is 68.6 fs,corresponding to an error of 17.2%.Similarly,for a sech-type incident pulse with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 343.9 fs,while the local model predicts an FWHM of 308.8 fs.The difference between the two models is 35.1 fs,with an error of 10.2%.We further examine the behavior of the models for Lorentzian pulses with FWHMs of 100 fs,200 fs and 500 fs.The differences between the global and local models are 17.1 fs,68.6 fs and 86.0 fs,respectively,with errors approximately around 17%.These comparative analyses clearly demonstrate the superior accuracy of the global model in intensity autocorrelation modeling.
基金the International Center for Global Earth Models(ICGEM)for the height anomaly and gravity anomaly data and Bureau Gravimetrique International(BGI)for free-air gravity anomaly data from the World Gravity Map project(WGM2012)The authors are grateful to Głowny Urza˛d Geodezji i Kartografii of Poland for the height anomaly data of the quasi-geoid PL-geoid2021.
文摘At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this method only if there is a geoid or quasi-geoid height model available.This paper proposes the methodology for local correction of the heights of high-order global geoid models such as EGM08,EIGEN-6C4,GECO,and XGM2019e_2159.This methodology was tested in different areas of the research field,covering various relief forms.The dependence of the change in corrected height accuracy on the input data was analyzed,and the correction was also conducted for model heights in three tidal systems:"tide free","mean tide",and"zero tide".The results show that the heights of EIGEN-6C4 model can be corrected with an accuracy of up to 1 cm for flat and foothill terrains with the dimensionality of 1°×1°,2°×2°,and 3°×3°.The EGM08 model presents an almost identical result.The EIGEN-6C4 model is best suited for mountainous relief and provides an accuracy of 1.5 cm on the 1°×1°area.The height correction accuracy of GECO and XGM2019e_2159 models is slightly poor,which has fuzziness in terms of numerical fluctuation.
基金co-supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2021B0301030007)the National Key Research and Development Program of China (Grant Nos. 2017YFA0604302 and 2017YFA0604804)+1 种基金the National Natural Science Foundation of China (Grant No. 41875137)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)。
文摘Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375153,42075151).
文摘In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas.
基金supported by the National Natural Science Foundation of China (Grant No. 41271003)the National Basic Research Program of China (Grants No. 2010CB428403 and 2010CB951103)
文摘Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.
基金This research work is jointly subsidied by two research projects entitled"A Predictive Study on the Changing Trend of Life-supporting Environment in China Over the Next 20-50 YearsA Modeling Research on the Responses of China's Terrestrial Ecosys
文摘The North East China Transect (NECT) is an exemplary region of landmass running along the line of 43°30′ North Latitude and caught between 112° and 130°30′ East Longtitude, and is being sampled by the International Geosphere-Biosphere Program (IGBP) for today’s study on global change. So far, it has already been listed in the first set of IGBP-sponsored transects, becoming a key theatre and "hot spot" for probing terrestrial ecosystems. In terms of biota, the nearly 1,600-kilometre-long tract is located in a mid-latitude zone, featuring a vegetational transition from a temperate timberland of evergreen coniferous forests and broadleaved deciduous forests to a mild-temperate steppe. According to the norms of biome types, it consists of three subzones: meadow steppe, typical steppe and desert steppe in a continuous east-to-west spatial sequence. There are four ecological stations supported by a great number of permanent samples, long-term plots and an enormous build-up of experimental data along
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12020101005 and 11975067)。
文摘Radio frequency capacitively coupled plasmas(RF CCPs)play a pivotal role in various applications in etching and deposition processes on a microscopic scale in semiconductor manufacturing.In the discharge process,the plasma series resonance(PSR)effect is easily observed in electrically asymmetric and geometrically asymmetric discharges,which could largely influence the power absorption,ionization rate,etc.In this work,the PSR effect arising from geometrically and electrically asymmetric discharge in argon-oxygen mixture gas is mainly investigated by using a plasma equivalent circuit model coupled with a global model.At relatively low pressures,as Ar content(α)increases,the inductance of the bulk is weakened,which leads to a more obvious PSR phenomenon and a higher resonance frequency(ω_(psr)).When the Ar content is fixed,varying the pressure and gap distance could also have different effects on the PSR effect.With the increase of the pressure,the PSR frequency shifts towards the higher order,but in the case of much higher pressure,the PSR oscillation would be strongly damped by frequent electron-neutral collisions.With the increase of the gap distance,the PSR frequency becomes lower.In addition,electrically asymmetric waveforms applied to a geometrically asymmetric chamber may weaken or enhance the asymmetry of the discharge and regulate the PSR effect.In this work,the Ar/O_(2) electronegative mixture gas is introduced in a capacitive discharge to study the PSR effect under geometric asymmetry effect and electrical asymmetry effect,which can provide necessary guidance in laboratory research and current applications.
文摘In this work, gravity anomalies from the XGM2016 global gravity model are used to study the basement of the Yaounde, Yoko area. The aim is to locate the characteristic tectonic faults and to characterize the geometry of the basement of these localities in order to improve the knowledge of the structural and tectonic basement of the study area. Numerical filters (vertical gradient, horizontal gradient, upward continuation) and Euler deconvolution were applied to the gravity anomalies respectively for qualitative and quantitative analysis. The results of the qualitative analysis allowed us to establish the lineament map of the study area;ranging from 0 to 35 km depth. For the quantitative analysis, the work is done in two parts: 1) highlighting the distribution of depths of geological structures in the basement of the study area;2) 2D1/2 modeling of geological structures to highlight the geometry of the basement of Yaounde, Yoko area. Thus, from five suitably selected profiles, the established models reveal the presence of eight blocks of geological structures of different densities and analyze their implications on the Sanaga Fault. Moreover, the models show that the positive anomalies characteristics for the Sanaga Fault reflect the anomalous character due to the strong dominance of the shale intrusion in the basement.
基金supported by the Korea Meteorological Administration Research and Development Program “Developing Application Technology for Atmospheric Research Aircraft” (Grant No. KMA2018-00222)
文摘This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.
基金funding from BRIN through the Research Collaboration Program with ORPA(No.2/III.1/HK/2024)Prayitno Abadi is participating in this study as part of a Memorandum of Understanding for Research Collaboration on Regional Ionospheric Observation at Telkom University(No.092/SAM3/TE-DEK/2021).
文摘The effect of ionospheric delay on the ground-based augmentation system under normal conditions can be mitigated by determining the value of the nominal ionospheric gradient(σvig).The nominal ionospheric gradient is generally obtained from Continuously Operating Reference Stations data by using the spatial single-difference method(mixed-pair,station-pair,or satellite-pair)or the temporal single-difference method(time-step).The time-step method uses only a single receiver,but it still contains ionospheric temporal variations.We introduce a corrected time-step method using a fixed-ionospheric pierce point from the geostationary equatorial orbit satellite and test it through simulations based on the global ionospheric model.We also investigate the effect of satellite paths on the corrected time-step method in the region of the equator,which tends to be in a more north–south direction and to have less coverage for the east–west ionospheric gradient.This study also addresses the limitations of temporal variation correction coverage and recommends using only the correction from self-observations.All processes are developed under simulations because observational data are still difficult to obtain.Our findings demonstrate that the corrected time-step method yieldsσvig values consistent with other approaches.
基金supported by the National Natural Science Foundation of China(42261026,41971094,42161025)the Gansu Provincial Science and Technology Program(22ZD6FA005)+1 种基金the Higher Education Innovation Foundation of Education Department of Gansu Province(2022A041)the open foundation of Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone(XJYS0907-2023-01).
文摘Climate warming profoundly affects hydrological changes,agricultural production,and human society.Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting.The Chinese Tianshan Mountains(CTM)have a high climate sensitivity,rendering the region particularly vulnerable to the effects of climate warming.In this study,we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset(1961-2014)and 24 global climate models(GCMs)of the Coupled Model Intercomparison Project Phase 6(CMIP6)to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale.Based on this,we conducted a systematic review of the interannual trends,dry-wet transitions(based on the standardized precipitation index(SPI)),and spatial distribution patterns of climate change in the CTM during 1961-2014.We further projected future temperature and precipitation changes over three terms(near-term(2021-2040),mid-term(2041-2060),and long-term(2081-2100))relative to the historical period(1961-2014)under four shared socio-economic pathway(SSP)scenarios(i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5).It was found that the CTM had experienced significant warming and wetting from 1961 to 2014,and will also experience warming in the future(2021-2100).Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble(MME)from the CMIP6 GCMs.The MME simulation results indicated an apparent wetting in 2008,which occurred later than the wetting observed from the CN05.1 in 1989.The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM.Warming and wetting are more rapid in the northern part of the CTM.By the end of the 21st century,all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple dry-wet transitions.However,the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future,so the nature of the drought in the CTM will not change at all.Additionally,the projected summer precipitation shows negative correlation with the radiative forcing.This study holds practical implications for the awareness of climate change and subsequent research in the CTM.
基金supported by the Chinese Academy of Sciences Strategic Priority Research Program (Grant No. XDA05110103)the State Key Project for Basic Research Program of China (Grant No. 2010CB951801)
文摘ABSTRACT The lAP Dynamic Global Vegetation Model (IAP-DGVM) has been developed to simulate the distribution and structure of global vegetation within the framework of Earth System Models. It incorporates our group's recent developments of major model components such as the shrub sub-model, establishment and competition parameterization schemes, and a process-based fire parameterization of intermediate complexity. The model has 12 plant functional types, including seven tree, two shrub, and three grass types, plus bare soil. Different PFTs are allowed to coexist within a grid cell, and their state variables are updated by various governing equations describing vegetation processes from fine-scale biogeophysics and biogeochemistry, to individual and population dynamics, to large-scale biogeography. Environmental disturbance due to fire not only affects regional vegetation competition, but also influences atmospheric chemistry and aerosol emissions. Simulations under observed atmospheric conditions showed that the model can correctly reproduce the global distribution of trees, shrubs, grasses, and bare soil. The simulated global dominant vegetation types reproduce the transition from forest to grassland (savanna) in the tropical region, and from forest to shrubland in the boreal region, but overestimate the region of temperate forest.
基金supported by Chinese Academy of Sciences (KZCX2-YW-219, 100 Tal-ents Program)Ministry of Science and Technology of China (2009CB421406)
文摘The capability of an improved Dynamic Global Vegetation Model (DGVM) in reproducing the impact of climate on the terrestrial ecosystem is evaluated. The new model incorporates the Community Land Model- DGVM (CLM3.0-DGVM) with a submodel for temperate and boreal shrubs, as well as other revisions such as the "two-leaf" scheme for photosynthesis and the definition of fractional coverage of plant functional types (PFTs). Results show that the revised model may correctly reproduce the global distribution of temperate and boreal shrubs, and improves the model performance with more realistic distribution of di?erent vege- tation types. The revised model also correctly reproduces the zonal distributions of vegetation types. In reproducing the dependence of the vegetation distribution on climate conditions, the model shows that the dominant regions for trees, grasses, shrubs, and bare soil are clearly separated by a climate index derived from mean annual precipitation and temperature, in good agreement with the CLM4 surface data. The dominant plant functional type mapping to a two dimensional parameter space of mean annual temperature and precipitation also qualitatively agrees with the results from observations and theoretical ecology studies.
基金financially supported by the Scientific Research Funds for Forestry Public Welfare of China(Granted No.201004026)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1054)
文摘Heilongjiang province is the largest forest zone in China and the forest coverage rate is 46%. Forests of Heilongjiang province play an important role in the forest ecosystem of China. In this study we investi- gated the spatial distribution of forest carbon storage in Heilongjiang province using 3083 plots sampled in 2010. We attempted to fit two global models, ordinary least squares model (OLS), linear mixed model (LMM), and a local model, geographically weighted regression model (GWR), to the relationship between forest carbon content and stand, environment, and climate factors. Five predictors significantly affected forest carbon storage and spatial distribution, viz. average diameter of stand (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope) and the product of precipitation and temperature (Rain Temp). The GWR model outperformed the two global models in both model fitting and prediction because it successfully reduced both spatial auto- correlation and heterogeneity in model residuals. More importantly, the GWR model provided localized model coefficients for each location in the study area, which allowed us to evaluate the influences of local stand conditions and topographic features on tree and stand growth, and forest carbon stock. It also helped us to better understand the impacts of silvi- cultural and management activities on the amount and changes of forest carbon storage across the province. The detailed information can be readily incorporated with the mapping ability of GIS software to provide excellent tools for assessing the distribution and dynamics of the for- est-carbon stock in the next few years.
基金This paper is partly supported by the Chinese Academy of Sciences International Partnership Creative Group "The Climate System Model Development and Application Studies", the 973 project under Grant No. 2005CB321703 the Fund for Innovative Research Groups with Grant No. 40221503+2 种基金the National Natural Science Foundation of China under Grant Nos. 40225013the NSFC project with Grant No. 40233031 The participation of Paul J. Hanson in this work was supported by the U.S. Department of Energy (D0E), 0ffice of Science, Biological and Environmental Research (BER), as a part of the Program for Ecosystem Research (PER). The data from the Walker Branch AmeriFlux tower site (Kell Wilson and Dennis Baldocchi) was developed with funding from the D0E, 0ffice of Science (BER) as a part of its Terrestrial Carbon Processes (TCP) program and from NASA/GEWEX.
文摘The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, within an integrated system, has been increasing. In this paper, some numerical schemes and a higher resolution soil texture dataset were employed to improve the Sheffield Dynamic Global Vegetation Model (SDGVM). Using eddy covariance-based measurements, we then tested the standard version of the SDGVM and the modified version of the SDGVM. Detailed observations of daily carbon and water fluxes made at the upland oak forest on the Walker Branch Watershed in Tennessee, USA offered a unique opportunity for these comparisons. The results revealed that the modified version of the SDGVM did a reasonable job of simulating the carbon and water flux and the variation of soil water content (SWC). However, at the end of the growing season, it failed to simulate the effect of the limitations on the soil respiration dynamics and as a result underestimated this respiration. It was also noted that the modified version overestimated the increase in the SWC following summer rainfall, which was attributed to an inadequate representation of the ground water and thermal cycle.
基金supported by the National Major Research High Performance Computing Program of China(Grant No.2016YFB02008)the National Natural Science Foundation of China(Grant Number 41705070)supported by the National Natural Science Foundation of China(Grant Numbers 41475099 and 41305096)
文摘In the past several decades, dynamic global vegetation models(DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmospheric Physics, a new version of DGVM(IAP-DGVM) has been developed and coupled to the Common Land Model(CoLM) within the framework of the Chinese Academy of Sciences' Earth System Model(CAS-ESM). This work reports the performance of IAP-DGVM through comparisons with that of the default DGVM of CoLM(CoLM-DGVM) and observations. With respect to CoLMDGVM, IAP-DGVM simulated fewer tropical trees, more "needleleaf evergreen boreal tree" and "broadleaf deciduous boreal shrub", and a better representation of grasses. These contributed to a more realistic vegetation distribution in IAP-DGVM,including spatial patterns, total areas, and compositions. Moreover, IAP-DGVM also produced more accurate carbon fluxes than CoLM-DGVM when compared with observational estimates. Gross primary productivity and net primary production in IAP-DGVM were in better agreement with observations than those of CoLM-DGVM, and the tropical pattern of fire carbon emissions in IAP-DGVM was much more consistent with the observation than that in CoLM-DGVM. The leaf area index simulated by IAP-DGVM was closer to the observation than that of CoLM-DGVM; however, both simulated values about twice as large as in the observation. This evaluation provides valuable information for the application of CAS-ESM, as well as for other model communities in terms of a comparative benchmark.
基金supported by the Chinese Academy of Sciences under Grant No.KZCX2-YW-219State Key Project for Basic Research Program of China(973)under Grant No.2010CB951801Key Program of National Natural Science Foundation under Grant No.40830103
文摘A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process, varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110103)the State Key Project for Basic Research Program of China(Grant No.2010CB951801)the National High Technology Research and Development Program of China(863 Program)(Grant No.2009AA122105)
文摘In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertiliza- tion, seed production, germination, and the growth of tree seedlings. It determines not only the population densities but also other important ecosystem structural variables. In current DGVMs, establishments of woody plant functional types (PFTs) are assumed to be either the same in the same grid cell, or largely stochastic. We investigated the uncertainties in the competition of establishment among coexisting woody PFTs from three aspects: the dependence of PFT establishments on vegetation states; background establishment; and relative establishment potentials of different PFTs. Sensitivity experi- ments showed that the dependence of establishment rate on the fractional coverage of a PFT favored the dominant PFT by increasing its share in establishment. While a small background establishment rate had little impact on equilibrium states of the ecosystem, it did change the timescale required for the establishment of alien species in pre-existing forest due to their disadvantage in seed competition during the early stage of invasion. Meanwhile, establishment purely fiom background (the scheme commonly used in current DGVMs) led to inconsistent behavior in response to the change in PFT specification (e.g., number of PFTs and their specification). Furthermore, the results also indicated that trade-off between irtdividual growth and reproduction/colonization has significant influences on the competition of establishment. Hence, further development of es- tablishment parameterization in DGVMs is essential in reducing the uncertainties in simulations of both ecosystem structures and successions.
基金This study is supported by the National Natural Sci-ence Foundation of China under contract No.40136010the Major State Basic Research Program of China under contract No.G1999043808the Youth Fund of National“863”Project of China under contract No.2002AA639350.
文摘To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid covering the area from 20°S to 50°N and from 99° to 150°E is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current.From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 m has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.
基金supported by the International Science & Technology Collaborative Program of China (2010DFB20190)Natural Science Foundation of China (41174004)the State Key Development Program of Basic Research of China (2008CB425705)
文摘On the basis of the newly released International Terrestrial Reference Frame(ITRF2008) by the International Earth Rotation Service (IERS), a new global plate model ITRF2008 plate for the major plates is established. This ITRF2008-derived model is analyzed in comparison with NNR-NUVEL1A model, which is mainly based on geological and geophysical data. The Eurasia and Paeifi6 plates display obvious differences in terms of the velocity fields derived from the two plate motion models. Plate acceleration is also introduced to characterize the differences of the two velocity fields which obtained from ITRF2008-plate and NNR-NUVEL1A models for major individual plates. The results show that the Africa, South America and Eurasia plates are undergoing acceleration, while the North America and Australia plates are in the state of deceleration motion