期刊文献+
共找到255篇文章
< 1 2 13 >
每页显示 20 50 100
Ruxolitinib improves the inflammatory microenvironment,restores glutamate homeostasis,and promotes functional recovery after spinal cord injury
1
作者 Jiang Cao Xiao Yu +10 位作者 Jingcheng Liu Jiaju Fu Binyu Wang Chaoqin Wu Sheng Zhang Hongtao Chen Zi Wang Yinyang Xu Tao Sui Jie Chang Xiaojian Cao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2499-2512,共14页
The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arth... The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arthritis,and managing inflammatory cytokine storms.Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma,the exact mechanism by which it enhances functional recovery after spinal cord injury,particularly its effect on astrocytes,remains unclear.To address this gap,we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury.Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury,restored EAAT2 expression,reduced glutamate levels,and alleviated excitatory toxicity.Furthermore,ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factor-α.Additionally,in glutamate-induced excitotoxicity astrocytes,ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3,thereby reducing glutamate-induced neurotoxicity,calcium influx,oxidative stress,and cell apoptosis,and increasing the complexity of dendritic branching.Collectively,these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes,reduces neurotoxicity,and effectively alleviates inflammatory and immune responses after spinal cord injury,thereby promoting functional recovery after spinal cord injury. 展开更多
关键词 astrocytes EAAT2 EXCITOTOXICITY glutamate homeostasis JAK-STAT pathway locomotor function NEUROTOXICITY RUXOLITINIB spinal cord injury transcriptome analysis
下载PDF
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications
2
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
p38 MAPK inhibitor SB202190 suppresses ferroptosis in the glutamate-induced retinal excitotoxicity glaucoma model
3
作者 Lemeng Feng Chao Wang +5 位作者 Cheng Zhang Wulong Zhang Weiming Zhu Ye He Zhaohua Xia Weitao Song 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2299-2309,共11页
Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogenactivated protein kinase(MAPK) pathway inhibitor SB202190 has a potential ability to ... Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogenactivated protein kinase(MAPK) pathway inhibitor SB202190 has a potential ability to suppress ferroptosis, and its downstream targets, such as p53, have been shown to be associated with ferroptosis. However, whether ferroptosis also occurs in retinal ganglion cells in response to glutamate excitotoxicity and whether inhibition of ferroptosis reduces the loss of retinal ganglion cells induced by glutamate excitotoxicity remain unclear. This study investigated ferroptosis in a glutamate-induced glaucoma rat model and explored the effects and molecular mechanisms of SB202190 on retinal ganglion cells. A glutamate-induced excitotoxicity model in R28 cells and an N-methyl-D-aspartate-induced glaucoma model in rats were used. In vitro experiments showed that glutamate induced the accumulation of iron and lipid peroxide and morphological changes of mitochondria in R28 cells, and SB202190 inhibited these changes. Glutamate induced the levels of p-p38 MAPK/p38 MAPK and SAT1 and decreased the expression levels of ferritin light chain, SLC7A11, and GPX4. SB202190 inhibited the expression of iron death-related proteins induced by glutamate. In vivo experiments showed that SB202190 attenuated N-methyl-D-aspartate-induced damage to rat retinal ganglion cells and improved visual function. These results suggest that SB202190 can inhibit ferroptosis and protect retinal ganglion cells by regulating ferritin light chain, SAT1, and SLC7A11/Gpx4 pathways and may represent a potential retina protectant. 展开更多
关键词 ferroptosis GLAUCOMA glutamate excitotoxicity p38 MAPK retinal ganglion cell SB202190
下载PDF
Astrocyte-neuron communication mediated by the Notch signaling pathway:focusing on glutamate transport and synaptic plasticity 被引量:1
4
作者 Ke-Xin Li Meng Lu +2 位作者 Meng-Xu Cui Xiao-Ming Wang Yang Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2285-2290,共6页
Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalitie... Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation.However,further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses.The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity.In this study,Yorkshire neonatal pigs(male,age 3 days,weight 1.0–1.5 kg,n=48)were randomly divided into control(sham surgery group)and five hypoxic ischemia subgroups,according to different recovery time,which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor(N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester).Once the model was established,immunohistochemistry,immunofluorescence staining,and western blot analyses of Notch pathway-related proteins,synaptophysin,and glutamate transporter were performed.Moreover,synapse microstructure was observed by transmission electron microscopy.At the early stage(6–12 hours after hypoxic ischemia)of hypoxic ischemic injury,expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated,the number of synaptic vesicles was reduced,and synaptic swelling was observed;at 12–24 hours after hypoxic ischemia,the Notch pathway was activated,excitatory amino acid transporter-2 and synaptophysin expression was increased,and the number of synaptic vesicles was slightly increased.Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor.This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin. 展开更多
关键词 ASTROCYTE astrocyte-neuron communication glutamate glutamate transporter hypoxic-ischemic injury magnetic resonance spectroscopy NEONATE Notch signaling pathway plasticity SYNAPSE
下载PDF
Adipose mesenchymal stem cell-derived extracellular vesicles reduce glutamate-induced excitotoxicity in the retina 被引量:1
5
作者 Tian-Qi Duan Zhao-Lin Gao +3 位作者 Ai-Xiang Luo Dan Chen Jian-Bin Tong Ju-Fang Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2315-2320,共6页
Adipose mesenchymal stem cells(ADSCs)have protective effects against glutamate-induced excitotoxicity,but ADSCs are limited in use for treatment of optic nerve injury.Studies have shown that the extracellular vesicles... Adipose mesenchymal stem cells(ADSCs)have protective effects against glutamate-induced excitotoxicity,but ADSCs are limited in use for treatment of optic nerve injury.Studies have shown that the extracellular vesicles(EVs)secreted by ADSCs(ADSC-EVs)not only have the function of ADSCs,but also have unique advantages including non-immunogenicity,low probability of abnormal growth,and easy access to target cells.In the present study,we showed that intravitreal injection of ADSC-EVs substantially reduced glutamate-induced damage to retinal morphology and electroretinography.In addition,R28 cell pretreatment with ADSC-EVs before injury inhibited glutamate-induced overload of intracellular calcium,downregulation ofα-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor(AMPAR)subunit GluA2,and phosphorylation of GluA2 and protein kinase C alpha in vitro.A protein kinase C alpha agonist,12-O-tetradecanoylphorbol 13-acetate,inhibited the neuroprotective effects of ADSC-EVs on glutamate-induced R28 cells.These findings suggest that ADSCEVs ameliorate glutamate-induced excitotoxicity in the retina through inhibiting protein kinase C alpha activation. 展开更多
关键词 adipose mesenchymal stem cells calcium overload ELECTRORETINOGRAPHY EXCITOTOXICITY extracellular vesicles GluA2 glutamate protein kinase C alpha R28 cells RETINA retinal ganglion cell
下载PDF
Glutamate in cancers:from metabolism to signaling 被引量:1
6
作者 Haowei Yi Geoff Talmon Jing Wang 《The Journal of Biomedical Research》 CAS CSCD 2020年第4期260-270,共11页
Glutamine and glutamate are major bioenergy substrates for normal and cancer cell growth.Cancer cells need more biofuel than normal tissues for energy supply,anti-oxidation activity and biomass production.Genes relate... Glutamine and glutamate are major bioenergy substrates for normal and cancer cell growth.Cancer cells need more biofuel than normal tissues for energy supply,anti-oxidation activity and biomass production.Genes related to metabolic chains in many cancers are somehow mutated,which makes cancer cells more glutamate dependent.Meanwhile,glutamate is an excitatory neurotransmitter for conducting signals through binding with different types of receptors in central neuron system.Interestingly,increasing evidences have shown involvement of glutamate signaling,guided through their receptors,in human malignancy.Dysregulation of glutamate transporters,such as excitatory amino acid transporter and cystine/glutamate antiporter system,also generates excessive extracellular glutamate,which in turn,activates glutamate receptors on cancer cells and results in malignant growth.These features make glutamate an attractive target for anti-cancer drug development with some glutamate targeted but blood brain barrier impermeable anti-psychosis drugs under consideration.We discussed the relevant progressions and drawbacks in this field herein. 展开更多
关键词 glutamate CANCERS METABOLISM glutamate receptors glutamate transporters
下载PDF
c-Fos expression within the L_5 spinal cord dorsal horn after spinal nerve ligation in rats Is intraplantar administration of glutamate different from intrathecal administration? 被引量:3
7
作者 Youhong Jin Hongshui Zhu +4 位作者 Zhihua Li Dongfang Li Jianhua Hu Motohide TakemuraO Norifumi YoneharaO 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第6期450-455,共6页
BACKGROUND:Injection of glutamate (Glu) in normal animals can cause neuronal c-Fos expression; however,whether Glu can induce spinal neuronal c-Fos expression in pain models is unclear. OBJECTIVE:To examine the effect... BACKGROUND:Injection of glutamate (Glu) in normal animals can cause neuronal c-Fos expression; however,whether Glu can induce spinal neuronal c-Fos expression in pain models is unclear. OBJECTIVE:To examine the effects of intraplantar and intrathecal injection of Glu on c-Fos expression in the L5 spinal cord dorsal horn Ⅰ/Ⅱand Ⅲ/Ⅳ layers after spinal nerve ligation,and to study the effects of the N-methyl-D-aspartic acid (NMDA) receptor antagonist,D-2-amino-5-phosphonopentanoate (D-AP5),and a selective group I mGluR antagonist,7-hydroyiminocyclo propan[a]chromen-1a-carboxylic acid ethyl ester (cpccoEt). DESIGN,TIME AND SETTING:A randomized,controlled animal study was performed at the Department of Pharmacology,Oral Anatomy,and Neurobiology,Osaka University Graduate School of Dentistry,from December 2005 to December 2006. MATERIALS:Glu (5 μmol),D-AP5 (50 nmol) and cpccoEt (250 nmol) were provided by Wako Pure Chemical Industries,Osaka,Japan,and diluted in saline (50 μL). The pH of all solutions was adjusted to 7.4. METHODS:Twelve rats were randomly divided into sham operation (n = 6) and spinal nerve ligation (SNL; n = 6) groups for behavioral assessments of neuropathic pain after ligation surgery of the left L5-6 nerve segment. Another 60 rats were randomly divided into sham operation,SNL,saline-intraplantar,saline-intrathecal,Glu-intraplantar,Glu-intrathecal,D-AP5-intrathecal,Glu-D-AP5-intrathecal,cpccoEt-intrathecal,and Glu-cpccoEt-intrathecal groups,with 6 rats in each group. All groups except sham operation group received a similar SNL. On day 14,rats received a 50-μL injection of saline,Glu,D-AP5,and/or cpccoEt into the left intraplantar or intrathecal L5-6 segments. MAIN OUTCOME MEASURES:The number of c-Fos positive neurons in both Ⅰ/Ⅱ and Ⅲ/Ⅳ spinal layers at L6 was observed using immunohistochemistry 2 hours after administration. RESULTS:(1) SNL increased the level of c-Fos expression in two sides of the spinal cord,particularly on Ⅲ/Ⅳ spinal layers of the ligated side. (2) Intraplantar or intrathecal administration of saline significantly increased the c-Fos labeled neurons in Ⅰ/Ⅱ spinal layers of the ligated side,compared with SNL alone (P < 0.01). (3) Intraplantar Glu (5 μmol) increased the number of c-Fos positive neurons in Ⅰ/Ⅱ spinal layers compared with intraplantar saline (P < 0.01). (4) The number of c-Fos neurons in Ⅰ/Ⅱspinal layers on both the ipsilateral and contralateral side after intraplantar Glu was lower than intrathecal Glu (P < 0.01),with a 3-fold higher induction by intrathecal Glu. (5) Co-administration of D-AP5 or cpccoEt reduced the effects of intrathecal Glu (P < 0.01). CONCLUSION:Intrathecal Glu increases c-Fos expression more than intraplantar Glu. Antagonists of NMDA and group I mGluRs block this effect. 展开更多
关键词 spinal cord nerve ligation glutamate C-FOS metabotropic glutamate receptors intrathecal administration intraplantar administration
下载PDF
Neuroprotective effects of cromakalim on cerebral ischemia-reperfusion injury in rats Correlation with hippocampal metabotropic glutamate receptor 1 alpha and glutamate transporter 1 被引量:2
8
作者 Shilei Wang Junchao Liu Qingxian Chang Yu Li, Yan Jiang Shiduan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第9期678-682,共5页
BACKGROUND:Studies have reported that potassium channel openers exhibit a protective effect on cerebral ischemia-reperfusion injury and inhibit glutamate excitotoxicity in rats.However,the effects of the glutamate rec... BACKGROUND:Studies have reported that potassium channel openers exhibit a protective effect on cerebral ischemia-reperfusion injury and inhibit glutamate excitotoxicity in rats.However,the effects of the glutamate receptor 1α and glutamate transporter 1 remain poorly understood.OBJECTIVE:To investigate the prophylactic use of the adenosine triphosphate-sensitive potassium channel opener cromakalim on neurological function and cerebral infarct size,as well as glutamate receptor 1α and glutamate transporter 1 expression,in rats with cerebral ischemia-reperfusion injury,and to explore action mechanisms underlying reduced glutamate excitotoxicity and neuroprotection in rats.DESIGN,TIME AND SETTING:Randomized,controlled,animal experiment was performed at the Brain Institute,Qingdao University Medical College,Between July 2008 and April 2009.MATERIALS:Cromakalim was purchased from Sigma,USA;rabbit anti-glutamate receptor 1α polyclonal antibody was offered by Wuhan Boster,China;rabbit anti-glutamate transporter 1 polyclonal antibody was offered by Santa Cruz Biotechnology,USA.METHODS:Sixty male,Wistar rats,aged 6 months,were randomly assigned to three groups (n= 20):sham-surgery,model,and cromakalim.Intraluminal thread methods were used to establish middle cerebral artery occlusion in rats from the model and cromakalim groups.Rats from the sham-surgery group were subjected to exposed common carotid artery,external carotid artery,and internal carotid artery,without occlusion.Cromakalim (10 mg/kg) was administered 30 minutes prior to middle cerebral artery occlusion,but there was no intervention in the model and sham-surgery groups.MAIN OUTCOME MEASURES:At 24 hours post-surgery,neurological behavioral functions were evaluated using Bederson's test,cerebral infarction volume was determined following tetrazolium chloride staining,and glutamate receptor 1α and glutamate transporter 1 expressions were detected using immunohistochemistry.RESULTS:Following cerebral ischemia-reperfusion injury,neurological behavioral malfunctions were obvious in all mice.Focal cerebral infarction was detected in ischemic hemispheres,glutamate receptor 1α expression increased,and glutamate transporter 1 expression decreased in the ischemic hemisphere (P < 0.05).Compared with the model group,neurological behavioral functions significantly improved,cerebral infarction volume was significantly reduced (P < 0.05),glutamate receptor 1α expression was significantly decreased,and glutamate transporter 1 expression was increased in the cromakalim group (P < 0.05).CONCLUSION:Improved neurological function and reduced cerebral infarction volume in rats through the preventive use of cromakalim could be related to decreased glutamate receptor 1α expression and enhanced glutamate transporter 1 expression. 展开更多
关键词 cerebral ischemia-reperfusion CROMAKALIM glutamate receptor glutamate transporter 1
下载PDF
^(3)H-GABA和^(3)H-Glutamate在海马的摄取及其衰老性变化
9
作者 姚志彬 叶鹿鸣 陈以慈 《解剖学报》 CAS 1988年第1期112-112,共1页
谷氨酸(Glu)和γ-氮基丁酸(GABA)是海马的主要候选介质,它们可能分属于海马的投射神经元和局部神经元,分别执行兴奋和抑制的传递功能。为了解Glu能和GABA能递质在海马的分布及其衰老性变化,本文用神经介质体外摄取和放射自显影方法,研究... 谷氨酸(Glu)和γ-氮基丁酸(GABA)是海马的主要候选介质,它们可能分属于海马的投射神经元和局部神经元,分别执行兴奋和抑制的传递功能。为了解Glu能和GABA能递质在海马的分布及其衰老性变化,本文用神经介质体外摄取和放射自显影方法,研究^(3)H-Glu和^(3)H-GABA摄取位点在海马的定位及衰老对摄取的影响。雄性Wistar大鼠20只,分成年组(12月)、老年组(30月)。 展开更多
关键词 海马 glutamate 边缘系统 GABA
原文传递
Glutamate enhances the expression of vascular endothelial growth factor in cultured SD rat astrocytes
10
作者 Chong-xiao Liu1,2,Yong Liu1,Wei Shi2,Xin-lin Chen1,Xin-li Xiao1,Ling-yu Zhao1,Yu-mei Tian1,Jun-feng Zhang11. Institute of Neurobiology,Medical School of Xi’an Jiaotong University,Xi’an 710061 2. Department of Neurosurgery,the Second Affiliated Hospital,Medical School of Xi’an Jiaotong University,Xi’an 710004,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第3期198-201,共4页
Objective To study the effect of glutamate on the expression of vascular endothelial growth factor (VEGF) mRNA and protein in cultured rat astrocytes. Methods Cultured rat astrocytes were randomly divided into 6 group... Objective To study the effect of glutamate on the expression of vascular endothelial growth factor (VEGF) mRNA and protein in cultured rat astrocytes. Methods Cultured rat astrocytes were randomly divided into 6 groups:control group (C),glutamate group (G),QA group (Q),DCG-IV group (D),L-AP4 group (L) and glutamate+MCPG group (G+M). Cells were cultured under nomoxic condition (95% air,5% CO2). RT-PCR and ELISA methods were used to detect the expression of VEGF mRNA and protein in cultured astrocytes,respectively. G+M group was preincubated with 1mM MCPG for 30 min prior to the stimulation with glutamate. There were 7 time points at 0,4,8,12,16,24 and 48 h in each group except G+M group. Results The expression of VEGF mRNA and protein did not differ significantly among D group,L group and C group. Different from that in C group,the expression of VEGF mRNA and protein could be enhanced both in a dose-dependent and time-dependent manner in G group and Q group. Meanwhile,the enhanced expression of VEGF mRNA and protein in G group was completely suppressed by MCPG after 24 h. Conclusion Glutamate can increase the expression of VEGF mRNA and protein in cultured astrocytes,which may be due to the activation of group I metabotropic glutamate receptors in astrocytes. 展开更多
关键词 glutamate metabotropic glutamate receptor vascular endothelial growth factor (VEGF) ASTROCYTE
下载PDF
Kinetic Studies of a Coenzyme B12 Dependent Reaction Catalyzed by Glutamate Mutase from <i>Clostridium cochlearium</i>
11
作者 Fredrick Edwin Lyatuu Wolfgang Buckel 《Advances in Enzyme Research》 CAS 2021年第4期72-90,共19页
<p style="margin-left:10.0pt;"> <br /> </p> <p style="margin-left:10.0pt;"> <span>The coenzyme B<sub>12</sub> dependent glutamate mutase is composed of two... <p style="margin-left:10.0pt;"> <br /> </p> <p style="margin-left:10.0pt;"> <span>The coenzyme B<sub>12</sub> dependent glutamate mutase is composed of two apoenzyme proteins subunits;S and E<sub>2</sub>, which while either fused or separate assemble with coenzyme B<sub>12</sub> to form an active holoenzyme (E<sub>2</sub>S<sub>2</sub>-B<sub>12</sub>) for catalyzing the reversible isomerization between (<i>S</i>)-glutamate and (2<i>S</i>, 3<i>S</i>)-3-methylas</span><span>- </span><span>partate. In order to assay the activity of glutamate mutase by UV spectrophotometry, this reaction is often coupled with methylaspartase which deaminates (2<i>S</i>, 3<i>S</i>)-3-methylaspartate to form mesaconate (<i>λ</i><sub>max</sub> = 240 nm, </span><span>Ɛ</span><sub><span>240</span></sub><span> = 3.8 mM<sup>-1</sup>·cm<sup>-1</sup>). The activities of different reconstitutions of glutamate mu<span>tase from separate apoenzyme components S and E in varied amount</span></span><span>s</span><span> of </span><span>coenzyme B<sub>12</sub> and adenosylpeptide B<sub>12</sub> as cofactors were measured by this assay and used to reveal the binding properties of the cofactor by the Michaelis</span><span>- </span><span>Menten Method. The values of <i>K<sub>m</sub></i> for coenzyme B<sub>12</sub> in due to reconstitutions of holoenzyme in 2, 7 and 14 S: E were determined as;1.12 ± 0.04 μM, 0.7 ± 0.05 μM and 0.52 ± 0.06 μM, respectively, so as those of adenosylpeptide B<sub>12</sub>;1.07 ± 0.04 μM and 0.35 ± 0.05 μM as obtained from respective 2 and 14 S: E compositions of holoenzyme. Analysis of these kinetics results curiously as<span>sociate</span></span><span>s</span><span> the increasing affinity of cofactors to apoenzyme with</span><span> </span><span>increased amount of component S used in reconstituting holoenzyme from separate</span><span> apoenzyme components and cofactor.</span><span> Moreover, in these studies a new method for assaying the activity of glutamate mutase was developed, whereby glutamate mutase activity is measured via depletion of NADH (<i>λ</i><sub>max</sub> = 340 nm, </span><span>Ɛ</span><sub><span>340</span></sub><span> = 6.3 mM<sup>-1</sup>·cm<sup>-1</sup>) as determined by UV spectrophotometry after addition of (2<i>S</i>,<span> 3<i>S</i>)-3-methylaspartate and pyruvate to a mixture of E<sub>2</sub>S<sub>2</sub>-B<sub>12</sub> and two auxiliary </span><span>holoenzymes system;pyridoxal-5-phosphate dependent glutamate-pyruvate </span><span>aminotransferase and N</span>ADH dependent (<i>R</i>)-2-hydroxyglutarate dehydrogenas<span>e. The activity of glutamate-pyruvate aminotransferase was relatively complete recovered upon the addition of (<i>S</i>)-glutamate and pyruvate to the mixtures of hologlutamate-pyruvate aminotransferase and (<i>R</i>)-2-hydroxylglutarate</span> dehydrogenase which were incubated with each putative inhibitor of glutamate mutase. Additionally, the new assay was used to determine the kinetic constants of (2<i>S</i>, 3<i>S</i>)-3-methylaspartate in the reaction of glutamate mutase as <i>K</i><sub>m</sub>= 7 ± 0.07 mM and <i>k</i><sub>cat</sub>= 0.54 ± 0.6 s<sup>-1</sup>. Application of Briggs-Haldane formula allowed the calculation of an equilibrium constant of the reversible isomerization, <i>K</i><sub>eq</sub> = [(<i>S</i>)-glutamate] × [(2<i>S</i>, 3<i>S</i>)-3-methylaspartate]<sup>-1</sup> = 16, where the kinetic constants of (<i>S</i>)-glutamate were determined by the standard methylaspartase coupled assay.<span></span></span> </p> <p> <br /> </p> 展开更多
关键词 Coenzyme B12 Adenosylpeptide B12 glutamate Mutase (S)-glutamate (2S 3S)-3-Methylaspartate Methylasparatase
下载PDF
Glutamate receptor delocalization in postsynaptic membrane and reduced hippocampal synaptic plasticity in the early stage of Alzheimer's disease 被引量:14
12
作者 Ning Li Yang Li +3 位作者 Li-Juan Li Ke Zhu Yan Zheng Xiao-Min Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第6期1037-1045,共9页
Mounting evidence suggests that synaptic plasticity provides the cellular biological basis of learning and memory, and plasticity deficits play a key role in dementia caused by Alzheimer's disease. However, the me... Mounting evidence suggests that synaptic plasticity provides the cellular biological basis of learning and memory, and plasticity deficits play a key role in dementia caused by Alzheimer's disease. However, the mechanisms by which synaptic dysfunction contributes to the pathogenesis of Alzheimer's disease remain unclear. In the present study, Alzheimer's disease transgenic mice were used to determine the relationship between decreased hippocampal synaptic plasticity and pathological changes and cognitive-behavioral deterioration, as well as possible mechanisms underlying decreased synaptic plasticity in the early stages of Alzheimer's disease-like diseases. APP/PS1 double transgenic(5 XFAD; Jackson Laboratory) mice and their littermates(wild-type, controls) were used in this study. Additional 6-weekold and 10-week-old 5 XFAD mice and wild-type mice were used for electrophysiological recording of hippocampal dentate gyrus. For10-week-old 5 XFAD mice and wild-type mice, the left hippocampus was used for electrophysiological recording, and the right hippocampus was used for biochemical experiments or immunohistochemical staining to observe synaptophysin levels and amyloid beta deposition levels. The results revealed that, compared with wild-type mice, 6-week-old 5 XFAD mice exhibited unaltered long-term potentiation in the hippocampal dentate gyrus. Another set of 5 XFAD mice began to show attenuation at the age of 10 weeks, and a large quantity of amyloid beta protein was accumulated in hippocampal cells. The location of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor and N-methyl-D-aspartic acid receptor subunits in synaptosomes was decreased. These findings indicate that the delocalization of postsynaptic glutamate receptors and an associated decline in synaptic plasticity may be key mechanisms in the early onset of Alzheimer's disease. The use and care of animals were in strict accordance with the ethical standards of the Animal Ethics Committee of Capital Medical University,China on December 17, 2015(approval No. AEEI-2015-182). 展开更多
关键词 nerve REGENERATION Alzheimer’s disease SYNAPTIC plasticity hippocampus learning and memory long-term POTENTIATION βamyloid glutamate receptor SYNAPTIC strength neural REGENERATION
下载PDF
Nerve growth factor pretreatment against glutamate-induced hippocampal neuronal injury Action mechanism of phosphatase and tensin homologue deleted on chromosome 10 被引量:12
13
作者 Yae Hu Jiahui Mao Yan Zhu Ailing Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第1期5-9,共5页
BACKGROUND: Nerve growth factor (NGF) attenuates glutamate-induced injury to hippocampal neurons, and the human tumor suppressor gene phosphatase and tensin homologue deleted on chromosome 10 (PTEN) promotes neuronal ... BACKGROUND: Nerve growth factor (NGF) attenuates glutamate-induced injury to hippocampal neurons, and the human tumor suppressor gene phosphatase and tensin homologue deleted on chromosome 10 (PTEN) promotes neuronal apoptosis. However, effects of PTEN in NGF-mediated neuroprotection against glutamate excitotoxicity remain poorly understood. OBJECTIVE: To investigate the relationship between NGF inhibition of glutamate-induced injury and PTEN. DESIGN, TIME AND SETTING: The randomized, controlled, in vitro study was performed at the Department of Pathophysiology, Medical School of Nantong University, China from October 2007 to March 2008. MATERIALS: Glutamate, NGF, 4, 6-diamidino-2-phenyl-indolediacetate, 3-[4, 5-dimethylthiazol-2-yl]- 2, 5-diphenyl tetrazoliumbromide (MTT), and lactate dehydrogenase kit (Sigma, USA), fluorescence microscope and inverted phase contrast microscope (Olympus, Japan) were used in this study. METHODS: Hippocampal neurons were obtained from newborn (< 24 hours) Sprague Dawley rats and cultured for 7 days. The control group was not treated with any intervention factor, the glutamate group was treated with glutamate (0.2 mmol/L), and NGF groups were treated with NGF (10, 50, 100, and 200 μg/L, respectively) prior to glutamate treatment. MAIN OUTCOME MEASURES: The MTT and lactate dehydrogenase assays were applied to evaluate viability of hippocampal neurons. Morphological changes in hippocampal neurons were observed using an inverted phase-contrast microscope, and neuronal apoptosis was detected by 4, 6-diamidino-2-phenyl-indolediacetate staining. PTEN mRNA and protein expression were measured by reverse transcription-polymerase chain reaction and Western blot analysis, respectively. RESULTS: Glutamate (0.2 mmol/L) induced significantly decreased neuronal viability and greater lactate dehydrogenase efflux compared with the control group (P < 0.01). However, compared with the glutamate group, cell viability significantly increased and lactate dehydrogenase efflux decreased in the NGF group with increasing NGF concentrations (P < 0.05 or P < 0.01). The apoptotic ratio and PTEN mRNA and protein expression decreased in the NGF group compared with the glutamate group (P < 0.01). CONCLUSION: Pretreatment with NGF exerted neuroprotective effects against glutamate-induced injury, partially through inhibition of PTEN expression and neuronal apoptosis. 展开更多
关键词 nerve growth factor glutamate phosphatase and tensin homologue deleted on chromosome 10 hippocampus neurons nerve factor
下载PDF
Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity 被引量:9
14
作者 Mechteld AR Vermeulen Jeffrey de Jong +2 位作者 Mathijs J Vaessen Paul AM van Leeuwen Alexander PJ Houdijk 《World Journal of Gastroenterology》 SCIE CAS CSCD 2011年第12期1569-1573,共5页
AIM:To assess whether glutamate plays a similar role to glutamine in preserving gut wall integrity.METHODS:The effects of glutamine and glutamate on induced hyperpermeability in intestinal cell lines were studied.Para... AIM:To assess whether glutamate plays a similar role to glutamine in preserving gut wall integrity.METHODS:The effects of glutamine and glutamate on induced hyperpermeability in intestinal cell lines were studied.Paracellular hyperpermeability was induced in Caco2.BBE and HT-29CL.19A cell lines by adding phorbol-12,13-dibutyrate(PDB) apically,after which the effects of glutamine and glutamate on horseradish peroxidase(HRP) diffusion were studied.An inhibitor of glutamate transport(L-trans-pyrrolidine-2,4-dicarboxylic acid:trans-PDC) and an irreversible blocker(acivicin) of the extracellular glutamine to glutamate converting enzyme,γ-glutamyltransferase,were used.RESULTS:Apical to basolateral HRP flux increased significantly compared to controls not exposed to PDB (n=30,P<0.001).Glutamine application reduced hyperpermeability by 19%and 39%in the respective cell lines.Glutamate application reduced hyperpermeability by 30%and 20%,respectively.Incubation of HT29CL.19A cells with acivicin and subsequent PDB and glutamine addition increased permeability levels.Incubation of Caco2.BBE cells with trans-PDC followed by PDB and glutamate addition also resulted in high permeability levels.CONCLUSION:Apical glutamate-similar to glutaminecan decrease induced paracellular hyperpermeability.Extracellular conversion of glutamine to glutamate and subsequent uptake of glutamate could be a pivotal step in the mechanism underlying the protective effect of glutamine. 展开更多
关键词 顶端 BASOLATERAL 流动 glutamate 夫酸安 内脏保护 内脏墙正直 渗透
下载PDF
Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders 被引量:9
15
作者 Georgia M Parkin Madhara Udawela +1 位作者 Andrew Gibbons Brian Dean 《World Journal of Psychiatry》 SCIE 2018年第2期51-63,共13页
Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the ... Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the pre-synaptic neuron and synaptic transmission, glutamate is either taken up into the presynaptic neuron or neighbouring glia by transmembrane glutamate transporters. Excitatory amino acid transporter(EAAT) 1 and EAAT2 are Na+-dependant glutamate transporters expressed predominantly in glia cells of the central nervous system. As the most abundant glutamate transporters, their primary role is to modulate levels of glutamatergic excitability and prevent spill over of glutamate beyond the synapse. This role is facilitated through the binding and transportation of glutamate into astrocytes and microglia. The function of EAAT1 and EAAT2 is heavily regulated at the levels of gene expression, post-transcriptional splicing, glycosylation states and cell-surface trafficking of the protein. Both glutamatergic dysfunction and glial dysfunction have been proposed to be involved in psychiatric disorder. This review will present an overview of the roles that EAAT1 and EAAT2 play in modulating glutamatergic activity in the human brain, and mount an argument that these two transporters could be involved in the aetiologies of schizophrenia and affective disorders as well as represent potential drug targets for novel therapies for those disorders. 展开更多
关键词 GLIA EXCITATORY amino acid TRANSPORTER PSYCHIATRY Affective disorders glutamate TRANSPORTER glutamate SCHIZOPHRENIA
下载PDF
Increased L-arginine Production by Site-directed Mutagenesis of N-acetyl-L-glutamate Kinase and pro B Gene Deletion in Corynebacterium crenatum 被引量:5
16
作者 ZHANG Bin WAN Fang +4 位作者 QIU Yu Lou CHEN Xue Lan TANG Li CHEN Jin Cong XIONG Yong Hua 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第12期864-874,共11页
Objective In Corynebacterium crenatum,the adjacent D311 and D312 of N-acetyl-L-glutamate kinase(NAGK),as a key rate-limiting enzyme of L-arginine biosynthesis under substrate regulatory control by arginine,were initia... Objective In Corynebacterium crenatum,the adjacent D311 and D312 of N-acetyl-L-glutamate kinase(NAGK),as a key rate-limiting enzyme of L-arginine biosynthesis under substrate regulatory control by arginine,were initially replaced with two arginine residues to investigate the L-arginine feedback inhibition for NAGK.Methods NAGK enzyme expression was evaluated using a plasmid-based method.Homologous recombination was employed to eliminate the pro B.Results The IC50 and enzyme activity of NAGK M4,in which the D311 R and D312 R amino acid substitutions were combined with the previously reported E19 R and H26 E substitutions,were 3.7-fold and 14.6% higher,respectively,than those of the wild-type NAGK.NAGK M4 was successfully introduced into the C.crenatum MT genome without any genetic markers;the L-arginine yield of C.crenatum MT-M4 was 26.2% higher than that of C.crenatum MT.To further improve upon the L-arginine yield,we constructed the mutant C.crenatum MT-M4 ?pro B.The optimum concentration of L-proline was also investigated in order to determine its contribution to L-arginine yield.After L-proline was added to the medium at 10 mmol/L,the L-arginine yield reached 16.5 g/L after 108 h of shake-flask fermentation,approximately 70.1% higher than the yield attained using C.crenatum MT.Conclusion Feedback inhibition of L-arginine on NAGK in C.crenatum is clearly alleviated by the M4 mutation of NAGK,and deletion of the pro B in C.crenatum from MT to M4 results in a significant increase in arginine production. 展开更多
关键词 ARGININE glutamate PROLINE KINASE ACETYL fermentation mutant deletion Feedback eliminate
下载PDF
Glutamate receptors and glutamatergic signalling in the peripheral nerves 被引量:4
17
作者 Ting-Jiun Chen Maria Kukley 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第3期438-447,共10页
In the peripheral nervous system,the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves.Axons within the nerves are in close contact with myelinating glia,the Schwan... In the peripheral nervous system,the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves.Axons within the nerves are in close contact with myelinating glia,the Schwann cells that are ideally placed to respond to,and possibly shape,axonal activity.The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells,as well as signalling via diffusible substances.Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves.Two types of experimental findings support this idea:first,glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves;second,axons and Schwann cells in the peripheral nerves express glutamate receptors.Yet,the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing.Remarkably,in the central nervous system,axons and myelinating glia are involved in glutamatergic signalling.This signalling occurs via different mechanisms,the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells.Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation,migration,and differentiation of oligodendrocyte precursor cells,survival of oligodendrocytes,and re-myelination of axons after damage.Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves?What is the functional role of glutamate receptors in the peripheral nerves?Is activation of glutamate receptors in the nerves beneficial or harmful during diseases?In this review,we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves.We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases. 展开更多
关键词 AMPA RECEPTORS axons glutamate METABOTROPIC glutamate RECEPTORS MYELINATION nerve injury NMDA RECEPTORS peripheral nervous system PNS Schwann cells synaptic SIGNALLING
下载PDF
Systematic analyses of glutamine and glutamate metabolisms across different cancer types 被引量:5
18
作者 Yuan Tian Wei Du +4 位作者 Sha Cao Yue Wu Ning Dong Yan Wang Ying Xu 《Chinese Journal of Cancer》 SCIE CAS CSCD 2017年第12期712-725,共14页
Background: Glutamine and glutamate are known to play important roles in cancer biology. However, no detailed information is available in terms of their levels of involvement in various biological processes across dif... Background: Glutamine and glutamate are known to play important roles in cancer biology. However, no detailed information is available in terms of their levels of involvement in various biological processes across different cancer types, whereas such knowledge could be critical for understanding the distinct characteristics of different cancer types. Our computational study aimed to examine the functional roles of glutamine and glutamate across different cancer types.Methods: We conducted a comparative analysis of gene expression data of cancer tissues versus normal control tissues of 11 cancer types to understand glutamine and glutamate metabolisms in cancer. Specifically, we developed a linear regression model to assess differential contributions by glutamine and/or glutamate to each of seven biological processes in cancer versus control tissues.Results: While our computational predictions were consistent with some of the previous observations, multiple novel predictions were made:(1) glutamine is generally not involved in purine synthesis in cancer except for breast cancer, and is similarly not involved in pyridine synthesis except for kidney cancer;(2) glutamine is generally not involved in ATP production in cancer;(3) glutamine's contribution to nucleotide synthesis is minimal if any in cancer;(4) glutamine is not involved in asparagine synthesis in cancer except for bladder and lung cancers; and(5) glutamate does not contribute to serine synthesis except for bladder cancer.Conclusions: We comprehensively predicted the roles of glutamine and glutamate metabolisms in selected metabolic pathways in cancer tissues versus control tissues, which may lead to novel approaches to therapeutic development targeted at glutamine and/or glutamate metabolism. However, our predictions need further functional validation. 展开更多
关键词 GLUTAMINE METABOLISM glutamate METABOLISM Nucleotide SYNTHESIS Lipid SYNTHESIS URIDINE diphosphate N-ACETYLGLUCOSAMINE (UDP-GlcNAc) METABOLISM
下载PDF
Achyranthes bidentata polypeptides prevent apoptosis by inhibiting the glutamate current in cultured hippocampal neurons 被引量:5
19
作者 Rong-Lu Pan Wen-Qing Hu +3 位作者 Jie Pan Li Huang Cheng-Cheng Luan Hong-Mei Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第6期1086-1093,共8页
Glutamate-induced excitotoxicity plays a critical role in the neurological impairment caused by middle cerebral artery occlusion.Achyranthes bidentata polypeptides have been shown to protect against neurological funct... Glutamate-induced excitotoxicity plays a critical role in the neurological impairment caused by middle cerebral artery occlusion.Achyranthes bidentata polypeptides have been shown to protect against neurological functional damage caused by middle cerebral artery occlusion,but the underlying neuroprotective mechanisms and the relationship to glutamate-induced excitotoxicity remain unclear.Therefore,in the current study,we investigated the protective effects of Achyranthes bidentata polypeptides against glutamate-induced excitotoxicity in cultured hippocampal neurons.Hippocampal neurons were treated with Mg^2+-free extracellular solution containing glutamate(300μM)for 3 hours as a model of glutamate-mediated excitotoxicity(glutamate group).In the normal group,hippocampal neurons were incubated in Mg^2+-free extracellular solution.In the Achyranthes bidentata polypeptide group,hippocampal neurons were incubated in Mg^2+-free extracellular solution containing glutamate(300μM)and Achyranthes bidentata polypeptide at different concentrations.At 24 hours after exposure to the agents,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Hoechst 33258 staining were used to assess neuronal viability and nuclear m'orphology,respectively.Caspase-3 expression and activity were evaluated using western blot assay and colorimetric enzymatic assay,respectively.At various time points after glutamate treatment,reactive oxygen species in cells were detected by H2 DCF-DA,and mitochondrial membrane potential was detected by rhodamine 123 staining.To examine the effect of Achyranthes bidentata polypeptides on glutamate receptors,electrophysiological recording was used to measure the glutamate-induced inward current in cultured hippocampal neurons.Achyranthes bidentata polypeptide decreased the percentage of apoptotic cells and reduced the changes in caspase-3 expression and activity induced by glutamate.In addition,Achyranthes bidentata polypeptide attenuated the amplitude of the glutamate-induced current.Furthermore,the glutamate-induced increase in intracellular reactive oxygen species and reduction in mitochondrial membrane potential were attenuated by Achyranthes bidentata polypeptide treatment.These findings collectively suggest that Achyranthes bidentata polypeptides exert a neuroprotective effect in cultured hippocampal neurons by suppressing the overactivation of glutamate receptors and inhibiting the caspase-3-dependent mitochondrial apoptotic pathway.All animal studies were approved by the Animal Care and Use Committee,Nantong University,China(approval No.20120216-001)on February 16,2012. 展开更多
关键词 Achyranthes bidentata POLYPEPTIDES APOPTOSIS caspase-3 EXCITOTOXICITY glutamate receptors MITOCHONDRIAL dysfunction MITOCHONDRIAL membrane potential neuroprotection reactive oxygen species STAUROSPORINE
下载PDF
Optogenetics-induced activation of glutamate receptors improves memory function in mice with Alzheimer’s disease 被引量:5
20
作者 Ke-Wei Wang Xiao-Lin Ye +2 位作者 Ting Huang Xi-Fei Yang Liang-Yu Zou 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第12期2147-2155,共9页
Optogenetics is a combination of optics and genetics technology that can be used to activate or inhibit specific cells in tissues. It has been used to treat Parkinson’s disease, epilepsy and neurological diseases, bu... Optogenetics is a combination of optics and genetics technology that can be used to activate or inhibit specific cells in tissues. It has been used to treat Parkinson’s disease, epilepsy and neurological diseases, but rarely Alzheimer’s disease. Adeno-associated virus carrying the CaMK promoter driving the optogenetic channelrhodopsin-2 (CHR2) gene (or without the CHR2 gene, as control) was injected into the bilateral dentate gyri, followed by repeated intrahippocampal injections of soluble low-molecular-weight amyloid-β1–42 peptide (Aβ1–42). Subsequently, the region was stimulated with a 473 nm laser (1–3 ms, 10 Hz, 5 minutes). The novel object recognition test was conducted to test memory function in mice. Immunohistochemical staining was performed to analyze the numbers of NeuN and synapsin Ia/b-positive cells in the hippocampus. Western blot assay was carried out to analyze the expression levels of glial fibrillary acidic protein, NeuN, synapsin Ia/b, metabotropic glutamate receptor-1a (mGluR-1a), mGluR-5, N-methyl-D-aspartate receptor subunit NR1, glutamate receptor 2, interleukin-1β, interleukin-6 and interleukin-10. Optogenetic stimulation improved working and short-term memory in mice with Alzheimer’s disease. This neuroprotective effect was associated with increased expression of NR1, glutamate receptor 2 and mGluR-5 in the hippocampus, and decreased expression of glial fibrillary acidic protein and interleukin-6. Our results show that optogenetics can be used to regulate the neuronal-glial network to ameliorate memory functions in mice with Alzheimer’s disease. The study was approved by the Animal Resources Committee of Jinan University, China (approval No. LL-KT-2011134) on February 28, 2011. 展开更多
关键词 nerve REGENERATION Alzheimer's disease amyloid-β1-42 DENTATE GYRUS channelrhodopsin-2 glutamate receptors memory neuroinflammation novel object recognition immunohistochemistry western blot assay neural REGENERATION
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部