期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
1
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) golden jackal optimization algorithm(gjoA) Improved Whale optimization algorithm(IWOA) unequal clustering
下载PDF
基于变分模态分解和IGJO-SVR的网络舆情预测
2
作者 张志霞 秦志毅 《计算机与现代化》 2024年第11期77-83,98,共8页
网络舆情演化趋势预测在当今的网络环境中对相关政府部门监管舆情发展和维持社会舆论稳定具有十分重要的现实意义。本文针对网络舆情数据的特殊性以及考虑模型预测结果的精确性,使用变分模态分解(VMD)和改进后的金豺优化支持向量回归(IG... 网络舆情演化趋势预测在当今的网络环境中对相关政府部门监管舆情发展和维持社会舆论稳定具有十分重要的现实意义。本文针对网络舆情数据的特殊性以及考虑模型预测结果的精确性,使用变分模态分解(VMD)和改进后的金豺优化支持向量回归(IGJO-SVR)构建网络舆情演化趋势预测模型,并以“北溪”事件相关舆情数据为案例进行实证研究,对比结果表明,本文所构建的预测模型精度显著优于其余模型。基于变分模态分解VMD和IGJO-SVR的网络舆情热度预测模型具有较为优秀的预测精度,在实际工作中可为相关政府部门提供切实有效的舆情态势研判和决策帮助。 展开更多
关键词 网络舆情 变分模态分解 金豺优化算法 支持向量回归 预警机制
下载PDF
VMD结合小波包信息熵和GJO-SVM的电机轴承故障诊断 被引量:4
3
作者 纪京生 周莉 马向阳 《现代制造工程》 CSCD 北大核心 2024年第2期128-136,共9页
针对电机滚动轴承故障特征难以提取从而导致诊断准确率低的问题,提出了一种基于变分模态分解(Variational Modal Decomposition,VMD)结合小波包信息熵(Wavelet Packet Information Entropy,WPIE)的特征提取方法,并采用金豺优化(Golden J... 针对电机滚动轴承故障特征难以提取从而导致诊断准确率低的问题,提出了一种基于变分模态分解(Variational Modal Decomposition,VMD)结合小波包信息熵(Wavelet Packet Information Entropy,WPIE)的特征提取方法,并采用金豺优化(Golden Jackal Optimization,GJO)算法优化后的支持向量机(Support Vector Machine,SVM)进行电机滚动轴承的故障诊断。首先,利用VMD将采集到的信号进行分解,依据局部极小包络熵筛选出最优本征模态(Intrinsic Mode Function,IMF)分量;其次,利用小波包将最优IMF分量再分解,并提取信息熵作为特征向量矩阵;最后,采用GJO算法对支持向量机中的惩罚参数和核参数进行寻优选择,建立GJO-SVM故障诊断模型,将特征向量矩阵输入金豺算法优化支持向量机(GJO-SVM)故障诊断模型中进行故障诊断。将VMD结合小波包信息熵特征提取与VMD结合近似熵特征提取进行对比试验,试验结果表明,VMD结合小波包信息熵特征提取精度提高了2.5%,其特征提取更加优越;将金豺算法优化支持向量机(GJO-SVM)与粒子群优化(Porticle Swarm OPtimization,PSO)算法支持向量机(PSO-SVM)、果蝇优化算法(Fruit fly Optimation Algorithm,FOA)支持向量机(FOA-SVM)进行对比试验,试验结果表明,GJO-SVM其平均准确率达到99.16%,较PSO-SVM、FOA-SVM分别提高了2.5%、3.61%。金豺算法优化支持向量机(GJO-SVM)可以更加有效提取并诊断滚动轴承故障。 展开更多
关键词 变分模态分解 小波包信息熵 金豺优化算法 支持向量机 轴承故障诊断
下载PDF
基于GJO特征量优选的AO-RF的变压器故障诊断模型 被引量:2
4
作者 叶育林 刘森 +6 位作者 黄松 韩晓慧 杜振斌 李彬 吕杰 薛杨 赵春琳 《高压电器》 CAS CSCD 北大核心 2024年第5期99-107,共9页
在变压器故障诊断过程中,进行合理的特征优选,将有助于提高诊断模型的诊断精度,为此,文中提出了一种基于金豺优化算法(golden Jackal optimization,GJO)特征量优选与AO-RF的变压器故障诊断模型。首先,采用GJO对构建的21维变压器油中溶... 在变压器故障诊断过程中,进行合理的特征优选,将有助于提高诊断模型的诊断精度,为此,文中提出了一种基于金豺优化算法(golden Jackal optimization,GJO)特征量优选与AO-RF的变压器故障诊断模型。首先,采用GJO对构建的21维变压器油中溶解气体特征量进行优选;然后,根据GJO得到的特征优选结果,采用天鹰算法(aquila optimizer,AO)优化随机森林(random forest,RF)的变压器故障诊断模型对变压器故障进行诊断,并与不同特征量、不同故障诊断模型的诊断结果进行了对比。实验结果表明:GJO优选特征量相比21维原始特征、三比值法、无编码比值法以及AO优选特征量的故障诊断准确率可提高1.12%~25.78%,kappa系数可提高0.02~0.24;AO-RF故障诊断模型较RF、SVM、ELM、SSA-RF、WOA-RF、GJO-RF模型的诊断准确率可提高1.84%~15.86%,kappa系数可提高0.02~0.16,验证了所提方法的有效性和准确性。 展开更多
关键词 变压器 故障诊断 金豺算法 随机森林 天鹰算法
下载PDF
基于MSIGJO的网联商用车换道轨迹规划方法
5
作者 赵红专 王可怡 +2 位作者 李文勇 展新 王涛 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第8期133-142,共10页
针对网联商用车换道安全性、平顺性较低的问题,提出一种基于多策略改进金豺优化算法(multi-strategy improved golden jackal optimization,MSIGJO)的网联商用车换道轨迹规划方法。首先,基于V2X(vehicle to everything)技术获取智能网... 针对网联商用车换道安全性、平顺性较低的问题,提出一种基于多策略改进金豺优化算法(multi-strategy improved golden jackal optimization,MSIGJO)的网联商用车换道轨迹规划方法。首先,基于V2X(vehicle to everything)技术获取智能网联商用车周围状态信息,建立商用车换道安全距离模型;其次,引入商用车换道平顺性、经济性和换道效率作为指标,构建多目标协同优化函数;最后,引入动态权重位置更新策略和翻转策略改进金豺优化算法(golden jackal optimization,GJO),进而提出MSIGJO算法,利用MSIGJO算法求解函数得到最优换道轨迹。研究结果表明:该方法在商用车换道过程中横向跟踪精度提升了12.67%,侧向加速度变化率和质心侧偏角变化率分别降低了11.94%和12.65%,有效提升智能网联商用车换道安全性和平顺性,为智能网联商用车换道轨迹规划研究提供参考。 展开更多
关键词 车辆工程 智能交通 换道轨迹规划 金豺优化算法 智能网联商用车 多目标优化
下载PDF
融合SVMD和IGJO-LSTM的污水处理曝气量预测
6
作者 侯登云 南新元 +2 位作者 夏斯博 陈浩辉 李海龙 《科学技术与工程》 北大核心 2024年第26期11323-11331,共9页
污水处理过程中,曝气量数据波动大、周期性不明显,现有模型难以对曝气量进行准确的预测。因此,提出了一种优化模型,此模型利用逐次变分模态分解提取曝气数据特征,并采用改进的金豺算法优化长短期记忆网络的超参数,以提升模型预测能力。... 污水处理过程中,曝气量数据波动大、周期性不明显,现有模型难以对曝气量进行准确的预测。因此,提出了一种优化模型,此模型利用逐次变分模态分解提取曝气数据特征,并采用改进的金豺算法优化长短期记忆网络的超参数,以提升模型预测能力。首先,针对实际污水数据复杂的问题,利用逐次变分模态分解算法分解重构原始曝气数据序列。其次,用长短期记忆网络分别对每个序列依次预测,并采用柯西反向学习混合变异策略改进金豺算法对长短期记忆网络参数进行优化。最后,将各个序列预测结果进行重组,得到最终预测值。利用实际污水水质数据对该模型进行验证,结果表明该模型有效提高了曝气量的预测精度,具有很好的应用前景,能很大提升污水处理厂的经济效益。 展开更多
关键词 污水处理 曝气量预测 逐次变分模态分解 金豺优化算法 长短期记忆网络
下载PDF
多场景下基于IGJO⁃DWA算法的机器人路径规划
7
作者 冯新 杨雄 曾豫豪 《传感器与微系统》 CSCD 北大核心 2024年第11期131-134,138,共5页
为解决传统算法在多场景下存在的搜索效率低、适应力差、动态性不足等问题,提出一种融合改进金豺优化算法(IGJO)和动态窗口法(DWA)的路径规划方法。首先,在GJO算法局部寻优阶段,引入自适应权重策略,从而防止算法陷入局部最优。同时,采... 为解决传统算法在多场景下存在的搜索效率低、适应力差、动态性不足等问题,提出一种融合改进金豺优化算法(IGJO)和动态窗口法(DWA)的路径规划方法。首先,在GJO算法局部寻优阶段,引入自适应权重策略,从而防止算法陷入局部最优。同时,采用逐维逆向学习机制,解决多维优化过程中各维之间的相互干扰以及全局和局部搜索不平衡问题。其次,在DWA算法中引入一种速度动态调整策略,并对其评价函数进行优化,从而提升路径的安全性。仿真结果表明:在多种不同场景下,IGJO⁃DWA算法在路径长度、规划成功率、行驶时长等方面均优于其他算法。实验结果表明:IGJO⁃DWA算法能够帮助机器人成功绕过各类型障碍物,确保机器人安全到达目的地,验证了算法的有效性。 展开更多
关键词 金豺优化算法 动态窗口法 机器人 路径规划 多场景
下载PDF
基于EEMD能量熵和GJO-KELM的滚动轴承故障诊断
8
作者 史书杰 赵凤强 +2 位作者 王波 杨晨昊 周帅 《电子测量技术》 北大核心 2024年第6期116-122,共7页
滚动轴承在旋转机械中发挥着重要作用,若出现故障,轻则引起设备停机,重则危及现场人员生命安全,因此有必要对其进行故障诊断。针对滚动轴承故障特征难以提取,传统分类方法正确率不高的问题,本文提出一种基于集合经验模态分解(EEMD)能量... 滚动轴承在旋转机械中发挥着重要作用,若出现故障,轻则引起设备停机,重则危及现场人员生命安全,因此有必要对其进行故障诊断。针对滚动轴承故障特征难以提取,传统分类方法正确率不高的问题,本文提出一种基于集合经验模态分解(EEMD)能量熵和金豺优化算法(GJO)优化核极限学习机(KELM)的故障诊断方法,实现了提取滚动轴承故障特征并正确分类的目标。通过实验数据进行验证,该方法能够提取到滚动轴承原始信号中隐含的故障信息特征,其诊断正确率高达98.47%。 展开更多
关键词 EEMD 能量熵 金豺优化算法 核极限学习机 故障诊断
原文传递
电磁混合式耦合器调隙装置多目标参数优化
9
作者 王爽 孙守锁 +1 位作者 郭永存 胡泽永 《浙江大学学报(工学版)》 北大核心 2025年第5期1007-1017,共11页
针对双盘式磁力耦合器的调隙机构普遍存在的体积大、调节精度低的问题,提出新型的电磁混合式磁力耦合器,通过电磁驱动可以实现磁力耦合器的精准调隙.以平均推力和推力波动为目标,对核心构件电磁调隙装置进行多目标优化.基于敏感度分析... 针对双盘式磁力耦合器的调隙机构普遍存在的体积大、调节精度低的问题,提出新型的电磁混合式磁力耦合器,通过电磁驱动可以实现磁力耦合器的精准调隙.以平均推力和推力波动为目标,对核心构件电磁调隙装置进行多目标优化.基于敏感度分析对设计参数进行分级优化,提出蜣螂优化算法优化BP神经网络模型(DBOBP)和多目标金豺优化算法(MOGJO),结合响应面法和扫描法,确定电磁调隙装置的最优参数.基于有限元法对推力波形、感应电动势、磁感应强度及磁场线分布进行分析,优化后径向气隙磁感应强度提升了19%,平均推力提升了57.8%,推力波动比值降低了28.3%,验证了最终设计相对于最初设计的优异性能以及新型磁力耦合器多目标参数分级优化的正确性. 展开更多
关键词 磁力耦合器 电磁调隙 DBO-BP神经网络 多目标金豺优化(MOgjo)算法 多目标参数优化
下载PDF
考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测
10
作者 冉启武 石卓见 +2 位作者 刘阳 黄杰 张宇航 《电网技术》 北大核心 2025年第3期1098-1108,I0071-I0075,共16页
为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合... 为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合,进而将多元负荷序列分解为本征模态函数集合;其次,通过基于反向传播(back propagation,BP)神经网络扰动的平均影响值(mean impact value,MIV)算法对与多元负荷相关的气象、日期及负荷因素进行特征筛选,从而为多元负荷构建高耦合度的特征矩阵;充分考虑到各单一模型的差异性及优势性,在采用k折交叉验证法减少过拟合的基础上,构建Stacking集成学习模型对多元负荷进行预测;最后采用美国亚利桑那州立大学坦佩校区多元负荷数据集进行实例验证,结果显示所提方法在电、冷、热负荷预测中的平均绝对百分比误差分别达到了0.903%、2.713%和1.616%,预测精度相比其他预测模型具有较大提升。 展开更多
关键词 多元负荷预测 综合能源系统 平均影响值算法 Stacking集成学习 金豺优化算法 复合指标
原文传递
基于GJO−MLP的露天矿边坡变形预测模型 被引量:4
11
作者 刘光伟 郭直清 刘威 《工矿自动化》 CSCD 北大核心 2023年第9期155-166,共12页
露天矿边坡变形受地质结构、水文地质条件、采矿活动等多种因素影响,使得预测模型复杂,难以准确捕捉所有影响因素。目前,大量监测设备部署在露天矿边坡周围,用于实时记录露天矿边坡位移数据,这些数据具有高维度、时序关联性及非线性等... 露天矿边坡变形受地质结构、水文地质条件、采矿活动等多种因素影响,使得预测模型复杂,难以准确捕捉所有影响因素。目前,大量监测设备部署在露天矿边坡周围,用于实时记录露天矿边坡位移数据,这些数据具有高维度、时序关联性及非线性等特性。如果在其他条件未知而只有数据的情况下,使用传统的边坡稳定性分析方法无法有效进行边坡变形预测,而采用仅基于数据的模型对露天矿边坡位移数据进行预测对边坡稳定性的事前分析十分必要。针对上述问题,提出了一种基于金豺优化多层感知机(GJO−MLP)的露天矿边坡变形预测模型。GJO中各智能体间相互独立,可以通过并行计算加速优化MLP的训练过程;GJO能够结合MLP的非线性建模和特征提取能力,使得优化后的MLP在处理复杂问题时更具优势。为检验GJO−MLP的可行性和有效性,将GJO−MLP分别与基于蚁群算法优化的MLP(ACO−MLP)、基于引力搜索算法优化的MLP(GSA−MLP)及基于差分进化算法优化的MLP(DE−MLP)进行对比分析,在6个数据集上的仿真实验结果表明:在相同实验条件下,相较于其他3种算法,GJO−MLP表现出更好的寻优性能。将基于GJO−MLP的边坡变形预测模型应用于宝日希勒露天矿边坡变形预测和花坪子边坡变形预测中,结果表明:在相同条件下,相较于其他3种算法,基于GJO−MLP的边坡变形预测模型在对边坡变形数据进行预测时不仅表现出更好的预测求解性能,而且还具有更好的可行性和鲁棒性。 展开更多
关键词 露天矿 滑坡灾害 边坡变形预测 边坡位移 金豺优化算法 多层感知机
下载PDF
多策略融合的改进金豺优化算法
12
作者 李丹丹 朱石磊 +2 位作者 李仲康 介百坤 王宏 《传感器与微系统》 北大核心 2025年第1期127-130,共4页
针对金豺优化(GJO)算法收敛速度慢、寻优精度低、勘探开发能力不足等缺点,提出一种多策略融合的改进金豺优化(MIGJO)算法。首先,加入佳点集法丰富金豺个体的初始种群,提高算法的遍历性;其次,在算法探索阶段,引入黄金正弦算法改变金豺的... 针对金豺优化(GJO)算法收敛速度慢、寻优精度低、勘探开发能力不足等缺点,提出一种多策略融合的改进金豺优化(MIGJO)算法。首先,加入佳点集法丰富金豺个体的初始种群,提高算法的遍历性;其次,在算法探索阶段,引入黄金正弦算法改变金豺的位置更新方式,增强算法局部开发和全局搜索能力;最后,结合反向学习和柯西变异策略,在最优解位置进行扰动变异,提高算法跳出局部最优的能力。对7个基准测试函数和当前现有改进麻雀算法进行仿真实验。测试结果表明,MIGJO算法具有更好的寻优精度和收敛性,验证了本文所采用改进策略的有效性和算法的优越性。 展开更多
关键词 金豺优化算法 佳点集 黄金正弦算法 反向学习 柯西变异
下载PDF
基于小波包分解的GJO-XGBoost水面蒸发量预测 被引量:4
13
作者 陈金红 崔东文 《三峡大学学报(自然科学版)》 CAS 2023年第3期1-7,共7页
为提高水面蒸发量预测精度,提出一种基于小波包变换(WPT)、金豺优化(GJO)算法和极端梯度提升(XGBoost)算法相融合的水面蒸发量时间序列预测模型,通过云南省龙潭站、董湖站、西洋站1991—2021年逐月水面蒸发量时序数据对模型进行检验.首... 为提高水面蒸发量预测精度,提出一种基于小波包变换(WPT)、金豺优化(GJO)算法和极端梯度提升(XGBoost)算法相融合的水面蒸发量时间序列预测模型,通过云南省龙潭站、董湖站、西洋站1991—2021年逐月水面蒸发量时序数据对模型进行检验.首先介绍GJO原理,在不同维度条件下选取4个标准函数对GJO进行仿真测试,并与粒子群优化(PSO)算法的仿真结果作对比.其次采用小波包变换(WPT)对逐月水面蒸发量时序数据进行分解处理,构建XGBoost算法输入输出向量.最后引入GJO算法对XGBoost超参数进行调优,建立WPT-GJO-XGBoost模型对各子序列分量进行预测和重构,并构建WPT-PSO-XGBoost、WPT-GJO-SVM、WPT-PSO-SVM、WPT-XGBoost作对比分析模型.结果表明:在不同维条件下GJO算法寻优精度优于PSO算法.WPT-GJO-XGBoost模型对龙潭站、董湖站、西洋站水面蒸发量预测的平均绝对百分比误差分别为5.491%、4.943%、5.024%,平均绝对误差分别为4.70、3.37、3.39 mm,预测精度优于WPT-PSO-XGBoost、WPT-GJO-SVM、WPT-PSO-SVM模型,远优于WPT-XGBoost模型.GJO算法能有效调优XGBoost超参数,提高XGBoost预测性能,超参数调优效果优于PSO算法. 展开更多
关键词 水面蒸发量 预测模型 金豺优化算法 小波包变换 仿真测试
下载PDF
融合粒子群的改进金豺算法及应用 被引量:3
14
作者 回立川 曹明远 迟一璇 《计算机集成制造系统》 EI CSCD 北大核心 2024年第5期1733-1744,共12页
为了解决传统金豺算法收敛精度低,搜索速度慢等问题,提出一种融合粒子群算法的改进金豺优化算法(PGJO)。首先,采用Chebyshev混沌映射和精英选择策略结合的方式对种群进行初始化,提高初始解质量;然后,结合粒子群优化算法(PSO)思想,提出... 为了解决传统金豺算法收敛精度低,搜索速度慢等问题,提出一种融合粒子群算法的改进金豺优化算法(PGJO)。首先,采用Chebyshev混沌映射和精英选择策略结合的方式对种群进行初始化,提高初始解质量;然后,结合粒子群优化算法(PSO)思想,提出一个新的搜索方式。采用动态转换策略,判断PGJO采用原Levy方式搜索还是采用新的搜索方式更新个体位置,以提高算法收敛精度;最后,提出了种群收敛监测策略,帮助算法跳出局部最优。将PGJO与其他智能优化算法经过11个基准测试函数对比实验表明,算法性能均优于其他算法。将PGJO应用于无人机路径规划当中,对比其他算法路径长度下降了3.4%,拐点个数减少了21%,验证了该算法的工程应用能力。 展开更多
关键词 智能优化算法 金豺优化算法 种群收敛监测策略 Chebyshev混沌映射 三维路径规划
下载PDF
基于改进金豺算法的短期负荷预测 被引量:3
15
作者 谢国民 王润良 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期65-74,共10页
针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用... 针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用改进金豺算法对双向长短期记忆网络的参数进行优化,并对每个子序列建立预测模型;最后,组合各模型结果得到最终预测值。实验结果表明,本文模型预测精度更高,与真实值拟合度更好。 展开更多
关键词 变分模态分解 改进金豺算法 双向长短期记忆 组合模型 短期负荷预测
下载PDF
采用金豺优化的LLC谐振变换器自抗扰稳压控制
16
作者 吴艳娟 王宏森 王云亮 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第4期266-274,共9页
为解决LLC谐振变换器采用传统PID控制时抑制负载冲击能力差的问题,提出采用金豺优化算法(golden jackal optimization,GJO)的改进线性自抗扰控制方法。该方法基于状态空间表达式,结合降阶模型中的参数信息,改进扩张状态观测器的系数矩... 为解决LLC谐振变换器采用传统PID控制时抑制负载冲击能力差的问题,提出采用金豺优化算法(golden jackal optimization,GJO)的改进线性自抗扰控制方法。该方法基于状态空间表达式,结合降阶模型中的参数信息,改进扩张状态观测器的系数矩阵。利用频域拟合的方法获得线性自抗扰控制器参数初值,避免了繁复的人工调参过程。使用GJO算法对线性自抗扰控制器参数寻优,进一步改善控制器性能。实验结果表明,相较于PSO-PID控制器,GJO-MLADRC控制器有效提高了LLC谐振变换器在系统扰动较大的情况下的动态性能,在负载突增、突降2种工况下,调节时间分别缩短了1.5、1.0 ms,输出电压最大波动量分别减小0.10、0.05 V,改进后的LADRC控制策略有效地抑制了恒压模式下负载波动对输出电压的扰动。 展开更多
关键词 LLC谐振变换器 自抗扰控制 动态性能 金豺优化算法
下载PDF
基于金豺优化PID的直流电机调速控制系统
17
作者 李传江 何鲮 朱燕飞 《上海师范大学学报(自然科学版中英文)》 2024年第2期181-187,共7页
针对传统直流(DC)有刷电机调速系统适应性不强、抗干扰能力和稳健性差等缺点,设计了基于金豺算法优化比例-积分-微分(PID)的直流有刷电机控制系统.在建立电机数学模型的基础上,将金豺优化(GJO)算法应用于PID参数整定,实现对电机的控制,... 针对传统直流(DC)有刷电机调速系统适应性不强、抗干扰能力和稳健性差等缺点,设计了基于金豺算法优化比例-积分-微分(PID)的直流有刷电机控制系统.在建立电机数学模型的基础上,将金豺优化(GJO)算法应用于PID参数整定,实现对电机的控制,并分别与传统试凑法、反向传播(BP)-PID算法和麻雀算法(SSA)-PID进行对比.仿真结果表明:所设计的控制算法在调节时间上减少了12 ms,超调量降低了3.689%,受到干扰后的调节时间减少了17 ms,表现出更快的调节转速、更强的抗干扰能力和更好的稳健性,为直流有刷电机调速控制提供了一种有效的方案. 展开更多
关键词 直流电机 比例-积分-微分(PID) 金豺优化(gjo)算法
下载PDF
多策略融合改进的金豺优化算法及其在马斯京根模型参数估计中的应用 被引量:2
18
作者 王军 王文川 +1 位作者 邱林 胡小雪 《中国农村水利水电》 北大核心 2024年第2期1-7,共7页
针对金豺优化算法在解决复杂或高维优化问题时易陷入局部最优、收敛速度慢和计算精度低等不足,提出一种基于多策略融合改进的金豺优化算法(Multi strategy fusion improved Golden Jackal Optimization Algorithm,MGJO)。首先,通过引入... 针对金豺优化算法在解决复杂或高维优化问题时易陷入局部最优、收敛速度慢和计算精度低等不足,提出一种基于多策略融合改进的金豺优化算法(Multi strategy fusion improved Golden Jackal Optimization Algorithm,MGJO)。首先,通过引入混沌映射策略初始化种群代替随机参数,使得算法能够在搜索空间中生成具有良好多样性的初始解,避免初始种群分布偏离最优值;其次,提出一种非线性变化的动态惯性权重使搜索过程更加符合实际情况,有效平衡了算法的全局搜索和局部搜索能力;最后,引入柯西变异的位置更新策略使其充分利用最优个体的引导作用提高种群多样性,以有效探索未知区域避免算法陷入局部最优。为了验证改进的金豺优化算法的寻优精度、收敛性能和稳定性,选择了8个不同特征的基准测试函数进行试验。结果表明,在8个基准测试函数中,改进的金豺优化算法的平均值、标准差、最优值都取得了最优的结果。此外,Wilcoxon符号秩检验的结果表明改进的金豺优化算法在统计学上是显著优越的。通过实例应用表明,基于多策略融合改进的金豺优化算法可以有效地估算出马斯京根模型的参数,优化效果明显优于粒子群优化算法、正弦余弦优化算法和金豺优化算法,进一步验证了多策略融合改进的有效性和改进算法在参数优化中的优越性,为更精确估计非线性马斯京根模型参数提供了一种有效的新方法。 展开更多
关键词 金豺优化算法 混沌映射 动态惯性权重 柯西变异 马斯京根模型
下载PDF
求解函数优化和特征选择的改进金豺狼优化算法
19
作者 邹睿 焦慧 龙文 《信阳师范学院学报(自然科学版)》 CAS 2024年第1期113-119,共7页
针对基本金豺狼优化算法(Golden Jackal Optimization,GJO)在解决高维优化问题时存在计算精度低、开发能力弱、容易陷入局部最优的缺点,提出一种改进GJO算法(I-GJO)。在改进算法中,设计一种基于正弦函数的非线性能量因子替代原随机递减... 针对基本金豺狼优化算法(Golden Jackal Optimization,GJO)在解决高维优化问题时存在计算精度低、开发能力弱、容易陷入局部最优的缺点,提出一种改进GJO算法(I-GJO)。在改进算法中,设计一种基于正弦函数的非线性能量因子替代原随机递减能量因子,以平衡算法在搜索过程中的全局探索和局部开发能力。在算法迭代后期引入翻筋斗学习策略,从而扩大群体搜索范围和改善解的精度。为了验证I-GJO算法的有效性,选取6个基准函数优化问题进行数值实验,并与灰狼优化、海鸥优化算法和基本GJO算法比较。结果表明,I-GJO获得较高的精度和较快的收敛速度。最后利用I-GJO算法求解特征选择问题,对16个基准数据集的数值结果显示,改进算法能有效去除冗余特征和提高分类精度。 展开更多
关键词 金豺狼优化算法 翻筋斗学习策略 函数优化 特征选择
下载PDF
改建房结构安全的三阶提升预警模型
20
作者 段在鹏 李炯 +1 位作者 杨泽鸿 黄豪琪 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第2期52-60,共9页
为研究改建房结构安全问题并提升模型预警精度,采用“文本-图像融合”、“信息再生成”和“智能优化模型参数”3个方法建立三阶提升预警模型。首先构建基础预警模型:选取VGG16、ResNet50等4种图像识别模型进行迁移学习,将性能最优者作... 为研究改建房结构安全问题并提升模型预警精度,采用“文本-图像融合”、“信息再生成”和“智能优化模型参数”3个方法建立三阶提升预警模型。首先构建基础预警模型:选取VGG16、ResNet50等4种图像识别模型进行迁移学习,将性能最优者作为基础预警模型;之后进行第1次预警精度提升:收集测试集中对应的文本信息,经独热编码等预处理后与图像信息“融合”,优选随机森林等5种算法以提升预警精度;然后进行第2次精度提升:采用过采样-深度卷积生成对抗网络(SMOTE-DCGAN)策略提高模型对隐患改建房的“捕捉”能力;最后,使用金豺优化算法进行第3次提升。研究结果表明:DenseNet121模型更能抓取到隐患改建房图像特征;改建房结构安全预警模型最优的是支持向量机(SVM),准确率为82.5%;使用SMOTE-DCGAN策略后,表现最佳的SVM和XGBoost,其隐患改建房的召回率分别提升10和5个百分点;金豺优化算法下的“SMOTE-DCGAN-SVM”准确率、召回率、精确率和F 1值再次提升7.0、7.5、10.5和9.1个百分点。研究结果可为相关部门排查改建房安全隐患提供技术支持。 展开更多
关键词 改建房 深度学习 集成算法 生成式对抗网络 金豺优化算法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部