期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Multi-Innovation Gradient Iterative Locally Weighted Learning Identification for A Nonlinear Ship Maneuvering System 被引量:2
1
作者 BAI Wei-wei REN Jun-sheng LI Tie-shan 《China Ocean Engineering》 SCIE EI CSCD 2018年第3期288-300,共13页
This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance me... This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance metric of locally weighted learning(LWL), and a novel non-parametric modeling technique is developed for a nonlinear ship maneuvering system. This proposed method’s advantages are as follows: first, it can avoid the unmodeled dynamics and multicollinearity inherent to the conventional parametric model; second, it eliminates the over-learning or underlearning and obtains the optimal distance metric; and third, the MIGI is not sensitive to the initial parameter value and requires less time during the training phase. These advantages result in a highly accurate mathematical modeling technique that can be conveniently implemented in applications. To verify the characteristics of this mathematical model, two examples are used as the model platforms to study the ship maneuvering. 展开更多
关键词 multi-innovation gradient iterative(MIGI) locally weighted learning(LWL) IDENTIFICATION nonlinearship maneuvering full-scale trial
下载PDF
Improved gradient iterative algorithms for solving Lyapunov matrix equations 被引量:1
2
作者 顾传青 范伟薇 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期395-399,共5页
In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared wi... In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples. 展开更多
关键词 gradient iterative (GI) algorithm improved gradient iteration (GI) algorithm Lyapunov matrix equations convergence factor
下载PDF
Spline adaptive filtering algorithm based on different iterative gradients:Performance analysis and comparison
3
作者 Sihai Guan Bharat Biswal 《Journal of Automation and Intelligence》 2023年第1期1-13,共13页
Two novel spline adaptive filtering(SAF)algorithms are proposed by combining different iterative gradient methods,i.e.,Adagrad and RMSProp,named SAF-Adagrad and SAF-RMSProp,in this paper.Detailed convergence performan... Two novel spline adaptive filtering(SAF)algorithms are proposed by combining different iterative gradient methods,i.e.,Adagrad and RMSProp,named SAF-Adagrad and SAF-RMSProp,in this paper.Detailed convergence performance and computational complexity analyses are carried out also.Furthermore,compared with existing SAF algorithms,the influence of step-size and noise types on SAF algorithms are explored for nonlinear system identification under artificial datasets.Numerical results show that the SAF-Adagrad and SAFRMSProp algorithms have better convergence performance than some existing SAF algorithms(i.e.,SAF-SGD,SAF-ARC-MMSGD,and SAF-LHC-MNAG).The analysis results of various measured real datasets also verify this conclusion.Overall,the effectiveness of SAF-Adagrad and SAF-RMSProp are confirmed for the accurate identification of nonlinear systems. 展开更多
关键词 Spline adaptive filter Multi-types iterative gradients STEP-SIZE Noise types Real datasets
下载PDF
An iterative Wiener filtering method based on the gravity gradient invariants
4
作者 Zhou Rui Wu Xiaoping 《Geodesy and Geodynamics》 2015年第4期286-291,共6页
How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the... How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the frequency spectrum analysis. According to the analysis results, gravity field model of the optima] degrees 90-240 is given, which is recovered by COCE gradient data. This paper presents an iterative Wiener filtering method based on the gravity gradient invariants. By this method a degree-220 model was calculated from GOCE SGG (Satellite Gravity Gradient) data. The degrees above 90 of ITG2010 were taken as the prior gravity field model, replacing the low degree gravity field model calculated by GOCE orbit data. GOCE gradient colored noises was processed by Wiener filtering. Finally by Wiener filtering iterative calculation, the gravity field model was restored by space-wise harmonic analysis method. The results show that the model's accuracy matched well with the ESA's (European Space Agency) results by using the same data, 展开更多
关键词 Gravity model GOCE(Gravity field and steady -state Ocean Circulation Explorer)Wiener filter Gravity gradient Colored noisesSpectrum analysis iterative method Invariant
原文传递
A Gradient Iteration Method for Functional Linear Regression in Reproducing Kernel Hilbert Spaces
5
作者 Hongzhi Tong Michael Ng 《Annals of Applied Mathematics》 2022年第3期280-295,共16页
We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm,we use an early stopping technique,instead of the cla... We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm,we use an early stopping technique,instead of the classical Tikhonov regularization,to prevent the iteration from an overfitting function.Under mild conditions,we obtain upper bounds,essentially matching the known minimax lower bounds,for excess prediction risk.An almost sure convergence is also established for the proposed algorithm. 展开更多
关键词 gradient iteration algorithm functional linear regression reproducing kernel Hilbert space early stopping convergence rates
原文传递
An orthogonally accumulated projection method for symmetric linear system of equations 被引量:2
6
作者 PENG Wu Jian LIN Qun ZHANG Shu Hua 《Science China Mathematics》 SCIE CSCD 2016年第7期1235-1248,共14页
A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. W... A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP. 展开更多
关键词 iterative method accumulated projection conjugate gradient method Krylov subspace
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部