Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- ample...Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- amples among them. From the microscopic view, a lo- cal region in the medium is occupied by particles with small but finite sizes and granular material is naturally modeled as an assembly of discrete particles in contacts On the other hand, the local region is identified with a material point in the overall structure and this discon- tinuous medium can then be represented by an effective continuum on the macroscopic level展开更多
Mechanical properties of a newly developed microalloyed bainitic steel were investigated after the hot forging, air cooling and tempering process. The microstructure of the as forged bainitic steel mainly consists of ...Mechanical properties of a newly developed microalloyed bainitic steel were investigated after the hot forging, air cooling and tempering process. The microstructure of the as forged bainitic steel mainly consists of granular bainite and -20 vol. % martensite. The fraction of retained austenite remains unchanged until tempering at 200 ℃, above which it decreases significantly. The increase of tempering temperature leads to decreases of both ultimate tensile strength and total elongation but decreases of both yield strength and reduction of area. The maximum and mini- mum values of impact toughness were observed after tempering at around 200 and 400 ℃, respectively. These effects are mainly attributed to the decomposition of martensite/austenite con stituents and the tempering effects in martensite. The tempering of the forged bainitic steel at around 200 ℃ results in an excellent combination of strength and toughness, which is comparable to that of the conventional quenched and-tempered 40Cr steel. Therefore, low-tempering treatment coupled with post-forging residual stress relieving is a feasible method to further improve the mechanical prooerties of the bainitic foging steel.展开更多
文摘Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- amples among them. From the microscopic view, a lo- cal region in the medium is occupied by particles with small but finite sizes and granular material is naturally modeled as an assembly of discrete particles in contacts On the other hand, the local region is identified with a material point in the overall structure and this discon- tinuous medium can then be represented by an effective continuum on the macroscopic level
基金financially supported by the National Key Research&Development Program of China under grant No.2016YFB0300100the Fundamental Research Funds for the Central Universities(No.2014JBM108)the Prospective Joint Study of Industry-University Cooperation of Jiangsu Province under grant No.BY2015009-02
文摘Mechanical properties of a newly developed microalloyed bainitic steel were investigated after the hot forging, air cooling and tempering process. The microstructure of the as forged bainitic steel mainly consists of granular bainite and -20 vol. % martensite. The fraction of retained austenite remains unchanged until tempering at 200 ℃, above which it decreases significantly. The increase of tempering temperature leads to decreases of both ultimate tensile strength and total elongation but decreases of both yield strength and reduction of area. The maximum and mini- mum values of impact toughness were observed after tempering at around 200 and 400 ℃, respectively. These effects are mainly attributed to the decomposition of martensite/austenite con stituents and the tempering effects in martensite. The tempering of the forged bainitic steel at around 200 ℃ results in an excellent combination of strength and toughness, which is comparable to that of the conventional quenched and-tempered 40Cr steel. Therefore, low-tempering treatment coupled with post-forging residual stress relieving is a feasible method to further improve the mechanical prooerties of the bainitic foging steel.