The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully with nitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anamm...The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully with nitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammox granular sludge with good settling property and high conversion activity. The Anammox reactor worked well with the shortest HRT of 2 43 h. Under the condition that HRT w as 6 39 h and influent concentration of ammonia and nitrite was 10 mmol/L, the removal of ammonia and nitrite was 97 17% and 100 00%, respectively. Corresponding volumetric total nitrogen loading rate and volumetric total nitrogen conversion rate were 100 83 mmol/(L·d) and 98 95 mmol/(L·d). The performance of Anammox reactor was efficient and stable.展开更多
Sludge granulation is considered to be the most critical parameter governing successful operation of an upflow anaerobic sludge blanket and expanded granular sludge bed (EGSB) reactors. Pre-granulated seeding sludge...Sludge granulation is considered to be the most critical parameter governing successful operation of an upflow anaerobic sludge blanket and expanded granular sludge bed (EGSB) reactors. Pre-granulated seeding sludge could greatly reduce the required startup time. Two lab-scale and a pilot-scale EGSB reactors were operated to treat Shaoxing Wastewater Treatment Plant (SWWTP) containing wastewater from real engineering printing and dyeing with high pH and sulfate concentration. The microbiological structure and the particle size distribution in aerobic excess sludge, sanitary landfill sludge digested for one year, and the granular sludge of EGSB reactor after 400 d of operation were analyzed through scanning electron microscopy (SEM) and sieves. The lab-scale EGSB reactor seeded with anaerobic sludge after digestion for one year in landfill showed obviously better total chemical oxygen demand (TCOD) removal efficiency than one seeded with aerobic excess sludge after cation polyacrylamide flocculation-concentration and dehydration. The TCOD removed was 470.8 mg/L in pilot scale EGSB reactor at short hydraulic retention time of 15 h. SEM of sludge granules showed that the microbiological structure of the sludge from different sources showed some differences. SEM demonstrated that Methanobacterium sp. was present in the granules of pilot-scale EGSB and the granular sludge produced by landfill contained a mixture of anaerobic/anoxic organisms in abundance. The particle size distribution in EGSB demonstrated that using anaerobic granular sludge produced by sanitary landfill as the seeding granular sludge was feasible.展开更多
Aerobic granular sludge was cultivated adopting internal-circulate sequencing batch airlift reactor. The contradistinctive experiment about short-term membrane fouling between aerobic granular sludge system and activa...Aerobic granular sludge was cultivated adopting internal-circulate sequencing batch airlift reactor. The contradistinctive experiment about short-term membrane fouling between aerobic granular sludge system and activated sludge system were investigated. The membrane foulants was also characterized by Fourier transform infrared (FTIR) spectroscopy technique. The results showed that the aerobic granular sludge had excellent denitrification ability; the removal efficiency of TN could reach 90%. The aerobic granular sludge could alleviate membrane fouling effectively. The steady membrane flux of aerobic granular sludge was twice as much as that of activated sludge system. In addition, it was found that the aerobic granular sludge could result in severe membrane pore-blocking, however, the activated sludge could cause severe cake fouling. The major components of the foulants were identified as comprising of proteins and polysaccharide materials.展开更多
In this study, the authors have investigated the effects of various factors on both aerobic and anaerobic degradation of 4-t-octylphenol (4-t-OP) in granular sludge. In comparison, the aerobic degradation rate was m...In this study, the authors have investigated the effects of various factors on both aerobic and anaerobic degradation of 4-t-octylphenol (4-t-OP) in granular sludge. In comparison, the aerobic degradation rate was much higher than that of anaerobic degradation. The optimal pH values for 4-t-OP degradation in granular sludge were 9 and 7 under aerobic and anaerobic conditions, respectively. And the degradation rate decreased with an increase in the initial 4-t-OP concentration. Addition of yeast extract or homologous compounds such as phenol also enhanced the 4-t-OP degradation, especially under the aerobic condition. To investigate the bacterial community in this study, the denaturing gradient gel electrophoresis (DGGE) method was applied, based on the primers, for the 16S rDNA V3 region of bacteria, γ-proteobacteria and bacillus were identified as the major species of sludge.展开更多
A lab-scale sequencing batch reactor (SBR) was set-up and the aerobic granular sludge was successfully incubated using anaerobic granular sludge as seed sludge. Nitrogen was partially removed by simultaneous nitrifi...A lab-scale sequencing batch reactor (SBR) was set-up and the aerobic granular sludge was successfully incubated using anaerobic granular sludge as seed sludge. Nitrogen was partially removed by simultaneous nitrification and denitrification (SND) via nitrite with free ammonia (FA) of about 10 mg/L. The denaturing gradient gel electrophoresis (DGGE) method was used to investigate community structure of α-Proteobacteria, β-Proteobacteria, ammonia oxidizing bacteria (AOB), and Nitrospira populations during start-up. The population sizes of bacteria, AOB and Nitrospira were examined using real-time PCR method. The analysis of community structure and Shannon index showed that stable structure of AOB population was obtained at day 35, while the communities of α- Proteobacteria, β-Proteobacteria, and Nitrospira became stable after day 45. At stable stage, the average cell densities were 1.1× 10^12, 2.2×10^10 and 1.0×10^10 cells/L for bacteria, AOB and Nitrospira, respectively. The relationship between characteristics of nitrifying bacteria community and nitrogenous substrate utilization constant was discussed by calculating Pearson correlation. Certain correlation seemed to exist between population size, biodiversity, and degradation constant. And the influence of population size might be greater than that of biodiversity.展开更多
In some industrial plants, wastewater was intermittently or seasonally generated. There may be periods during which wastewater treatment facilities have to be set into an idle phase over several weeks. When wastewater...In some industrial plants, wastewater was intermittently or seasonally generated. There may be periods during which wastewater treatment facilities have to be set into an idle phase over several weeks. When wastewater was generated again, the activated sludge flocs may have disintegrated. In this experiment, re-activation characteristics of aerobic granular sludge starved for 2 months were investigated. Specific oxygen utilization rate(SOUR) was used as an indicator to evaluate the metabolic activity of the sludge. The results revealed that aerobic granular sludge could be stored up to two months without running the risk of losing the integrity of the granules and metabolic potentials. The apparent color of aerobic granules stored at room temperature gradually turned from brownish-yellowish to gray brown. They appeared brownish-yellowish again 2 weeks after re-activation. The velocity and strength of granules after 2-month idle period could be fully restored about 3 weeks after re-activation. Metabolic activity, however, dropped to 15 8 mg O_2/(g MLVSS·h), i.e. 74 % reduction after 2 months of storage. After restarting the reactor, it took 2 weeks that SOUR of up to 48 5 mg O_2 /(g MLVSS·h) was achieved. A stable effluent COD concentration of less than 150 mg/L was achieved during the re-activation process.展开更多
Based on the successful performance of a lab-scale upflow anaerobic sludge blanket (UASB) reactor with the capacity of simultaneous methanogenesis and denitrification (SMD), the specific phylogenetic groups and co...Based on the successful performance of a lab-scale upflow anaerobic sludge blanket (UASB) reactor with the capacity of simultaneous methanogenesis and denitrification (SMD), the specific phylogenetic groups and community structure of microbes in the SMD granule in the UASB reactor were investigated by the construction of the Eubacteria and Archaea 16S rDNA clone libraries, fragment length polymorphism, and sequence blast. Real time quantitative-polymerase chain reaction (RTQ-PCR) technique was used to quantify the contents of Eubacteria and Archaea in the SMD granule. The contents of some special predominant methanogens were also investigated. The results indicated that the Methanosaeta and Methanobacteria were the predominant methanogens in all Archaea in the SMD granule, with contents of 71.59% and 22.73% in all 88 random Archaea clones, respectively. The diversity of Eubacteria was much more complex than that of Archaea. The low GC positive gram bacteria and ε-Protebacteria were the main predominant Eubacteria species in SMD granule, their contents were 49.62% and 12.03% in all 133 random Eubacteria clones respectively. The results of RTQ-PCR indicated that the content of Archaea was less than Eubacteria, the Archaea content in total microorganisms in SMD granule was about 27.6%.展开更多
Objective To investigate the effect of chemical oxygen demand (COD) concentrations on the anaerobic ammonium oxidation (ANAMMOX). Methods An Expanded Granular Sludge Bed (EGSB) reactor was used to cultivate the ...Objective To investigate the effect of chemical oxygen demand (COD) concentrations on the anaerobic ammonium oxidation (ANAMMOX). Methods An Expanded Granular Sludge Bed (EGSB) reactor was used to cultivate the granular sludge and to perform the ANAMMOX reaction in the bench scale experiment. NH4^+-N and NO2^--N were measured by using colorimetric method. NO3^+-N was analyzed by using the UV spectrophotometric method. COD measurement was based on digestion with potassium dichromate in concentrated sulphuric acid. Results When the COD concentrations in the reactors were 0 mg/L, 200 mg/L, 350 mg/L, and 550 mg/L, respectively, the NH4^+-N removal efficiency was 12.5%, 14.2%, 14.3%, and 23.7%; the removal amount of NO2-N was almost the same; the nitrate removal efficiency was 16.8%, 94.5%, 86.6%, and 84.2% and TN removal efficiency was 16.3%, 50.7%, 46.9%, and 50.4%, moreover, the COD removal efficiency was 85%, 65.7%, and 60%; the COD removal rate was 27.42, 61.88, and 97.8 mg COD/(h·L). Conclusion COD concentrations have a significant influence on anaerobic ammonium oxidation by granular sludge.展开更多
Terylene artificial silk printing and dyeing wastewater(TPD wastewater), containing averaged 710 mg/L terephthalic acid(TA) as the main carbon source and the character pollutant, was subjected to expanded granular slu...Terylene artificial silk printing and dyeing wastewater(TPD wastewater), containing averaged 710 mg/L terephthalic acid(TA) as the main carbon source and the character pollutant, was subjected to expanded granular sludge bed(EGSB) process. The stability of the EGSB process was firstly conducted by laboratory experiment. TA ionization was the predominated factor influencing the acid-base balance of the system. High concentration of TA in wastewater resulted in sufficient buffering capacity to neutralize the volatile fatty acids(VFA) generated from substrate degradation and provided strong base for anaerobic system to resist the pH decrease below 6.5. VFA and UFA caused almost no inhibition on the anaerobic process and biogas production except that pH was below 6.35 and VFA was at its maximum value. Along with the granulating of the activated sludge, the efficiency of organic removal and production rate of biogas increased gradually and became more stable. After start-up, the efficiency of COD removal increased to 57%—64%, pH stabilized in a range of 7.99—8.04, and production rate of biogas was relatively high and stable. Sludge granulating, suitable influent of pH and loading were responsible for the EGSB stability. The variation of VFA concentration only resulted in neglectable rebound of pH, and the inhibition from VFA could be ignored in EGSB. The EGSB reactor was stable for TPD wastewater treatment.展开更多
To characterize the effects of pentachlorophenol (PCP) on the performance and microbial community of aerobic granular sludge in sequencing batch reactor (SBR), the web-based terminal restriction fragment length polymo...To characterize the effects of pentachlorophenol (PCP) on the performance and microbial community of aerobic granular sludge in sequencing batch reactor (SBR), the web-based terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT- PCR) techniques were used to explore the bacterial community structure. When PCP increased from 0 to 50 mg/L, the COD removal rate changed little, while the ammonia removal rate dropped from 100% to 64.9%. The results of molecular characterization showed t...展开更多
A series of batch experiments were conducted in 125 mL serum bottles to assess the toxicity of different concentrations of ammonia nitrogen to the specific methanogenic activity of anaerobic granular sludge from upflo...A series of batch experiments were conducted in 125 mL serum bottles to assess the toxicity of different concentrations of ammonia nitrogen to the specific methanogenic activity of anaerobic granular sludge from upflow anaerobic sludge bed(UASB) and expanded granular sludge bed(EGSB) reactors. The effects of pH value and temperature on toxicity of ammonia nitrogen to anaerobes were investigated. The results show that the specific methanogenic activity of anaerobic granular sludge suffers inhibition from ammonia nitrogen, the concentrations of ammonia nitrogen that produce 50 % inhibition of specific methanogenic activity for sludge from UASB and EGSB reactor are 2.35 and 2.75 g/L, respectively. Hydrogen utilizing methanogens suffers less inhibition from ammonia mtrogen than that of acetate utilizing methanogens. Hydrogen-producing acetogens that utilize propionate and butyrate as substrates suffer serious inhibition from ammonia nitrogen. The toxicity of ammonia nitrogen to anaerobic granular sludge enhances when pH value and temperature increase. Anaerobic granular sludge can bear higher concentrations of ammonia nitrogen after being acclimated by ammonia nitrogen for 7 d.展开更多
A microbial community structure of granules harvested from an anaerobic sludge blanket reactor treating phenolic wastewater was investigated using fluorescence in situ hybridization(FISH)and clone library construction...A microbial community structure of granules harvested from an anaerobic sludge blanket reactor treating phenolic wastewater was investigated using fluorescence in situ hybridization(FISH)and clone library construction.Clones of Syntrophorhabdaceae and Cryptanaerobacter were observed to be responsible for phenol degradation.For accurate taxonomic assignment of Cryptanaerobacter clones,phylogenetic analysis using nearly full-length 16S ribosomal RNA(rRNA)gene sequences was necessary.Three oligonucleotide probes were designed to detect the following three taxonomic groups:Syntrophorhabdaceae,Cryptanaerobacter,and Syntrophus.FISH analysis of thin sections of anaerobic granules showed a random distribution of bacteria and archaea.However,a well-defined distribution of Syntrophorhabdaceae,Cryptanaerobacter,and Syntrophus was observed.Cryptanaerobacter and Syntrophus were found on the outer layer of the granules and were closely associated with each other,while Syntrophorhabdaceae was located in the deeper part of the granules.Such specific distribution of the bacteria is most likely due to their metabolic association and affinity for the substrate.Phenol degradation in the granular sludge was observed to be carried out in the following way.First,Cryptanaerobacter converts phenol to benzoate,which is then degraded by Syntrophus into acetate.This syntrophic degradation of phenol occurs near the surface of the granule,where the phenol concen-tration is high.In the deeper part of the granule,where the phenol concentration is lower,Syntrophorhabdaceae degrades phenol into acetate.We observed that Syntrophorhabdaceae is less likely to produce benzoate as an intermediate to feed the neighboring organisms,which contradicts the theo-ries presented by previous studies.展开更多
Anaerobic granular sludge is of key importance for highly effective operation of hybrid anaerobic baffled reactor(HABR).An observation and analysis on the composition of anaerobic granular sludge in each separation co...Anaerobic granular sludge is of key importance for highly effective operation of hybrid anaerobic baffled reactor(HABR).An observation and analysis on the composition of anaerobic granular sludge in each separation compartment of HABR was conducted by using scanning electron microscope(SEM)and molecular biotechnology,and specific methanogenic activity(SMA)and coenzyme F420 content were determined.It was indicated that the disparity of microbial composition was significant among these separation compartments of HABR,and the HABR encouraged phase separation.The results show the understanding of microbiological characteristics of anaerobic granular sludge in HABR is helpful for cultivating granular sludge,which ensures the effective operation of the reactor.展开更多
[Objective]We aimed to discuss the optimal conditions of sludge granulation on the basis of IC reactor.[Method]By using the formulated glucose wastewater,we studied the rapid cultivation of granular sludge as well as ...[Objective]We aimed to discuss the optimal conditions of sludge granulation on the basis of IC reactor.[Method]By using the formulated glucose wastewater,we studied the rapid cultivation of granular sludge as well as its influencing factors,so as to discuss the optimal conditions of sludge granulation.[Result]Through the static culture outside of IC reactor and dynamic culture in IC reactor,granular sludge appeared within a training cycle,with particle size of 1.0-1.5 mm.In IC reactor,when COD concentration of influent water was 5 000 mg /L,rising velocity was 0.9 m /h,pH was around 7,and auxiliary materials (like flocculant and active carbon) and mature granular sludge were added to the actor during the training process,the granulation process of sludge was accelerated.[Conclusion]The research could provide references for the rapid start-up of IC reactor.展开更多
Effect of ammonia at different concentrations on aerobic granular sludge and activated sludge was investigated in this study. Meanwhile, bacterial diversity variation and ammonia oxidizing bacterium (AOB) quantifica...Effect of ammonia at different concentrations on aerobic granular sludge and activated sludge was investigated in this study. Meanwhile, bacterial diversity variation and ammonia oxidizing bacterium (AOB) quantification within both kinds of sludge were monitored by terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT-PCR) technique, respectively. The results showed that the COD removal of both kinds of sludge changed slightly when the ammonia removal efficiency decreased gradually with the ammonia concentration increased from 100 mg L^-1 to 500 mg L^-1 Furthermore, activated sludge demonstrated higher ammonia removal ability than that of aerobic granular sludge (10%- 16%). As revealed by T-RFLP, activated sludge was of higher ammonia removal ability and more abounding bacterial diversity than that of aerobic granular sludge, suggesting that the bacterial diversity was probably relevant to the ammonia removal. The RT-PCR results indicated that the AOB population size of activated sludge and aerobic granular sludge were 2.80× 10^4-3.44× 10^4cells (g dried sludge)^-1 and 7.83×10^4-1.18×10^5cells (g dried sludge)^-1, respectively. There is no obvious positive correlation between the ammonia removal ability and number of AOB in both kinds of sludge.展开更多
The textile processing plants utilize a wide variety of dyes and other chemicals such as acids, bases, salts, detergents, sizes, oxidants, mercerizing and finishing chemicals. Many of these are not retained in the fin...The textile processing plants utilize a wide variety of dyes and other chemicals such as acids, bases, salts, detergents, sizes, oxidants, mercerizing and finishing chemicals. Many of these are not retained in the final product and are discharged in the effluent. Therefore, the objective of this study was to assess the performance of EGSB (Expanded Granular Sludge Bed) reactor to treat non-acidifie wastewater. Several experiments using starch and volatile fatty acids as model substrates were conducted. The problems of piston formation were evaluated at a variety of relevant operational conditions, such as substrate concentration, organic and hydraulic loading rates. The results showed that newly grown acidogenic biomass diluted original methanogenic biomass and the granular sludge in the EGSB reactor deteriorated. The piston formation in the EGSB reactor that was fed with non-acidified wastewater occurred due to high growth of acidogenic biomass and high upflow velocity applied in the system.展开更多
This article provides some ideas about several key parameters in design of multistage anaerobic granular sludge reactor (MA(iSR), and an MAGSR was designed by these ideas. By experiment this paper studies the produ...This article provides some ideas about several key parameters in design of multistage anaerobic granular sludge reactor (MA(iSR), and an MAGSR was designed by these ideas. By experiment this paper studies the productivity of biogas and circulation flux of wastewater. The results indicate that in certain scope the circulation flux increases in linear with the biogas productivity rise. The result by the experiment and by the hydraulics model about the circulation flux is different. The circulation flux can be several or more than ten times of the influence.展开更多
The screening and identification of attachment genes is important to exploring the formation mechanism of biofilms at the gene level.It is helpful to the development of key culture technologies for aerobic granular sl...The screening and identification of attachment genes is important to exploring the formation mechanism of biofilms at the gene level.It is helpful to the development of key culture technologies for aerobic granular sludge(AGS).In this study,genome-wide sequencing and gene editing were employed for the first time to investigate the effects and functions of attachment genes in AGS.With the help of whole-genome analysis,ten attachment genes were screened from thirteen genes,and the efficiency of gene screening was greatly improved.Then,two attachment genes were selected as examples to further confirm the gene functions by constructing gene-knockout recombinant mutants of Stenotrophomonas maltophilia;when the two attachment genes were knocked out,the attachment potential was reduced by 50.67%and 43.93%,respectively.The results provide a new theoretical principle and efficient method for the development of AGS from the perspective of attachment genes.展开更多
Saline wastewater is regarded as a challenge for wastewater treatment plants because high-salinity conditions negatively affect on traditional biological technologies.Aerobic granular sludge(AGS)has gained attention a...Saline wastewater is regarded as a challenge for wastewater treatment plants because high-salinity conditions negatively affect on traditional biological technologies.Aerobic granular sludge(AGS)has gained attention as a promising technology for saline wastewater treatment because of its compact structure and the ability to withstand toxic loadings.Therefore,this study investigated the saltresistance performance,sludge properties and microbial community of AGS under low-salinity and high-salinity conditions,with the saline concentrations ranging from 0 to 50 g/L.The results showed that AGS could withstand long-term saline stresses,and the maximum salinity reached 50 g/L within 113 d.Under salinities of 10,30,and 50 g/L,the chemical oxygen demand(COD)removal efficiencies were 90.3%,88.0%and 78.0%,respectively.AGS also its maintained strength and aggregation at salinities of 10 and 30 g/L.Overproduction of extracellular polymeric substances(EPS)by non-halophilic bacteria that enhanced sludge aggregation.The compact structure that ensured the microorganisms bioactivity helped to remove organic matters under salinities of 10 and 30 g/L.At a salinity of 50 g/L,moderately halophilic bacteria,including Salinicola,Thioclava,Idiomarina and Albirhodobacter,prevailed in the reactor.The dominant microbial communities shifted to moderately halophilic bacteria,which could maintain aerobic granular stabilization and remove organic matters under 50 g/L salinity.These results in this study provide a further explanation for the long-term operation of AGS for treating saline wastewater at different salinities.It is hoped that this work could bring some clues for the mystery of salt-resistance mechanisms.展开更多
Membrane capacitive deionization(MCDI)is a cost-effective desalination technique known for its low energy consumption.The performance of MCDI cells relies on the properties of electrode materials.Activated carbon is t...Membrane capacitive deionization(MCDI)is a cost-effective desalination technique known for its low energy consumption.The performance of MCDI cells relies on the properties of electrode materials.Activated carbon is the most widely used electrode material.However,the capacitive carbon available on the market is often expensive.Here,we developed hierarchically porous biochar by combining carbonization and activation processes,using easily acquired aerobic granular sludge(AGS)from biological sewage treatment plants as a precursor.The biochar had a specific surface area of 1822.07 m^(2)g^(-1),with a micropore area ratio of 58.65%and a micropore volume of 0.576 cm3 g^(-1).The MCDI cell employing the biochar as electrodes demonstrated a specific adsorption capacity of 34.35 mg g^(-1),comparable to commercially available activated carbon electrodes.Our study presents a green and sustainable approach for preparing highly efficient,hierarchically porous biochar from AGS,offering great potential for enhanced performance in MCDI applications.展开更多
文摘The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully with nitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammox granular sludge with good settling property and high conversion activity. The Anammox reactor worked well with the shortest HRT of 2 43 h. Under the condition that HRT w as 6 39 h and influent concentration of ammonia and nitrite was 10 mmol/L, the removal of ammonia and nitrite was 97 17% and 100 00%, respectively. Corresponding volumetric total nitrogen loading rate and volumetric total nitrogen conversion rate were 100 83 mmol/(L·d) and 98 95 mmol/(L·d). The performance of Anammox reactor was efficient and stable.
基金Project supported by the Major Scientific Key Problem Program of Scientific Commission of Zhejiang Province,China(2004C13027).
文摘Sludge granulation is considered to be the most critical parameter governing successful operation of an upflow anaerobic sludge blanket and expanded granular sludge bed (EGSB) reactors. Pre-granulated seeding sludge could greatly reduce the required startup time. Two lab-scale and a pilot-scale EGSB reactors were operated to treat Shaoxing Wastewater Treatment Plant (SWWTP) containing wastewater from real engineering printing and dyeing with high pH and sulfate concentration. The microbiological structure and the particle size distribution in aerobic excess sludge, sanitary landfill sludge digested for one year, and the granular sludge of EGSB reactor after 400 d of operation were analyzed through scanning electron microscopy (SEM) and sieves. The lab-scale EGSB reactor seeded with anaerobic sludge after digestion for one year in landfill showed obviously better total chemical oxygen demand (TCOD) removal efficiency than one seeded with aerobic excess sludge after cation polyacrylamide flocculation-concentration and dehydration. The TCOD removed was 470.8 mg/L in pilot scale EGSB reactor at short hydraulic retention time of 15 h. SEM of sludge granules showed that the microbiological structure of the sludge from different sources showed some differences. SEM demonstrated that Methanobacterium sp. was present in the granules of pilot-scale EGSB and the granular sludge produced by landfill contained a mixture of anaerobic/anoxic organisms in abundance. The particle size distribution in EGSB demonstrated that using anaerobic granular sludge produced by sanitary landfill as the seeding granular sludge was feasible.
基金Project supported by the University Doctorial Research Foundation.Ministry of Education of China(No.20030141022).
文摘Aerobic granular sludge was cultivated adopting internal-circulate sequencing batch airlift reactor. The contradistinctive experiment about short-term membrane fouling between aerobic granular sludge system and activated sludge system were investigated. The membrane foulants was also characterized by Fourier transform infrared (FTIR) spectroscopy technique. The results showed that the aerobic granular sludge had excellent denitrification ability; the removal efficiency of TN could reach 90%. The aerobic granular sludge could alleviate membrane fouling effectively. The steady membrane flux of aerobic granular sludge was twice as much as that of activated sludge system. In addition, it was found that the aerobic granular sludge could result in severe membrane pore-blocking, however, the activated sludge could cause severe cake fouling. The major components of the foulants were identified as comprising of proteins and polysaccharide materials.
文摘In this study, the authors have investigated the effects of various factors on both aerobic and anaerobic degradation of 4-t-octylphenol (4-t-OP) in granular sludge. In comparison, the aerobic degradation rate was much higher than that of anaerobic degradation. The optimal pH values for 4-t-OP degradation in granular sludge were 9 and 7 under aerobic and anaerobic conditions, respectively. And the degradation rate decreased with an increase in the initial 4-t-OP concentration. Addition of yeast extract or homologous compounds such as phenol also enhanced the 4-t-OP degradation, especially under the aerobic condition. To investigate the bacterial community in this study, the denaturing gradient gel electrophoresis (DGGE) method was applied, based on the primers, for the 16S rDNA V3 region of bacteria, γ-proteobacteria and bacillus were identified as the major species of sludge.
基金Project supported by the New Century Excellent Talent Scholarship of China(No.NCET-05-0387)the Doctodal Unit Scholarship of China(No.20050247016).
文摘A lab-scale sequencing batch reactor (SBR) was set-up and the aerobic granular sludge was successfully incubated using anaerobic granular sludge as seed sludge. Nitrogen was partially removed by simultaneous nitrification and denitrification (SND) via nitrite with free ammonia (FA) of about 10 mg/L. The denaturing gradient gel electrophoresis (DGGE) method was used to investigate community structure of α-Proteobacteria, β-Proteobacteria, ammonia oxidizing bacteria (AOB), and Nitrospira populations during start-up. The population sizes of bacteria, AOB and Nitrospira were examined using real-time PCR method. The analysis of community structure and Shannon index showed that stable structure of AOB population was obtained at day 35, while the communities of α- Proteobacteria, β-Proteobacteria, and Nitrospira became stable after day 45. At stable stage, the average cell densities were 1.1× 10^12, 2.2×10^10 and 1.0×10^10 cells/L for bacteria, AOB and Nitrospira, respectively. The relationship between characteristics of nitrifying bacteria community and nitrogenous substrate utilization constant was discussed by calculating Pearson correlation. Certain correlation seemed to exist between population size, biodiversity, and degradation constant. And the influence of population size might be greater than that of biodiversity.
文摘In some industrial plants, wastewater was intermittently or seasonally generated. There may be periods during which wastewater treatment facilities have to be set into an idle phase over several weeks. When wastewater was generated again, the activated sludge flocs may have disintegrated. In this experiment, re-activation characteristics of aerobic granular sludge starved for 2 months were investigated. Specific oxygen utilization rate(SOUR) was used as an indicator to evaluate the metabolic activity of the sludge. The results revealed that aerobic granular sludge could be stored up to two months without running the risk of losing the integrity of the granules and metabolic potentials. The apparent color of aerobic granules stored at room temperature gradually turned from brownish-yellowish to gray brown. They appeared brownish-yellowish again 2 weeks after re-activation. The velocity and strength of granules after 2-month idle period could be fully restored about 3 weeks after re-activation. Metabolic activity, however, dropped to 15 8 mg O_2/(g MLVSS·h), i.e. 74 % reduction after 2 months of storage. After restarting the reactor, it took 2 weeks that SOUR of up to 48 5 mg O_2 /(g MLVSS·h) was achieved. A stable effluent COD concentration of less than 150 mg/L was achieved during the re-activation process.
文摘Based on the successful performance of a lab-scale upflow anaerobic sludge blanket (UASB) reactor with the capacity of simultaneous methanogenesis and denitrification (SMD), the specific phylogenetic groups and community structure of microbes in the SMD granule in the UASB reactor were investigated by the construction of the Eubacteria and Archaea 16S rDNA clone libraries, fragment length polymorphism, and sequence blast. Real time quantitative-polymerase chain reaction (RTQ-PCR) technique was used to quantify the contents of Eubacteria and Archaea in the SMD granule. The contents of some special predominant methanogens were also investigated. The results indicated that the Methanosaeta and Methanobacteria were the predominant methanogens in all Archaea in the SMD granule, with contents of 71.59% and 22.73% in all 88 random Archaea clones, respectively. The diversity of Eubacteria was much more complex than that of Archaea. The low GC positive gram bacteria and ε-Protebacteria were the main predominant Eubacteria species in SMD granule, their contents were 49.62% and 12.03% in all 133 random Eubacteria clones respectively. The results of RTQ-PCR indicated that the content of Archaea was less than Eubacteria, the Archaea content in total microorganisms in SMD granule was about 27.6%.
基金The work was supported by the National Natural Science Foundation of China (Grant No. 59978020).
文摘Objective To investigate the effect of chemical oxygen demand (COD) concentrations on the anaerobic ammonium oxidation (ANAMMOX). Methods An Expanded Granular Sludge Bed (EGSB) reactor was used to cultivate the granular sludge and to perform the ANAMMOX reaction in the bench scale experiment. NH4^+-N and NO2^--N were measured by using colorimetric method. NO3^+-N was analyzed by using the UV spectrophotometric method. COD measurement was based on digestion with potassium dichromate in concentrated sulphuric acid. Results When the COD concentrations in the reactors were 0 mg/L, 200 mg/L, 350 mg/L, and 550 mg/L, respectively, the NH4^+-N removal efficiency was 12.5%, 14.2%, 14.3%, and 23.7%; the removal amount of NO2-N was almost the same; the nitrate removal efficiency was 16.8%, 94.5%, 86.6%, and 84.2% and TN removal efficiency was 16.3%, 50.7%, 46.9%, and 50.4%, moreover, the COD removal efficiency was 85%, 65.7%, and 60%; the COD removal rate was 27.42, 61.88, and 97.8 mg COD/(h·L). Conclusion COD concentrations have a significant influence on anaerobic ammonium oxidation by granular sludge.
文摘Terylene artificial silk printing and dyeing wastewater(TPD wastewater), containing averaged 710 mg/L terephthalic acid(TA) as the main carbon source and the character pollutant, was subjected to expanded granular sludge bed(EGSB) process. The stability of the EGSB process was firstly conducted by laboratory experiment. TA ionization was the predominated factor influencing the acid-base balance of the system. High concentration of TA in wastewater resulted in sufficient buffering capacity to neutralize the volatile fatty acids(VFA) generated from substrate degradation and provided strong base for anaerobic system to resist the pH decrease below 6.5. VFA and UFA caused almost no inhibition on the anaerobic process and biogas production except that pH was below 6.35 and VFA was at its maximum value. Along with the granulating of the activated sludge, the efficiency of organic removal and production rate of biogas increased gradually and became more stable. After start-up, the efficiency of COD removal increased to 57%—64%, pH stabilized in a range of 7.99—8.04, and production rate of biogas was relatively high and stable. Sludge granulating, suitable influent of pH and loading were responsible for the EGSB stability. The variation of VFA concentration only resulted in neglectable rebound of pH, and the inhibition from VFA could be ignored in EGSB. The EGSB reactor was stable for TPD wastewater treatment.
基金the Science Foundation ofJiangsu Province, China (No. BK2005402)the Nation-al Natural Science Foundation of China (No. 30640018)
文摘To characterize the effects of pentachlorophenol (PCP) on the performance and microbial community of aerobic granular sludge in sequencing batch reactor (SBR), the web-based terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT- PCR) techniques were used to explore the bacterial community structure. When PCP increased from 0 to 50 mg/L, the COD removal rate changed little, while the ammonia removal rate dropped from 100% to 64.9%. The results of molecular characterization showed t...
文摘A series of batch experiments were conducted in 125 mL serum bottles to assess the toxicity of different concentrations of ammonia nitrogen to the specific methanogenic activity of anaerobic granular sludge from upflow anaerobic sludge bed(UASB) and expanded granular sludge bed(EGSB) reactors. The effects of pH value and temperature on toxicity of ammonia nitrogen to anaerobes were investigated. The results show that the specific methanogenic activity of anaerobic granular sludge suffers inhibition from ammonia nitrogen, the concentrations of ammonia nitrogen that produce 50 % inhibition of specific methanogenic activity for sludge from UASB and EGSB reactor are 2.35 and 2.75 g/L, respectively. Hydrogen utilizing methanogens suffers less inhibition from ammonia mtrogen than that of acetate utilizing methanogens. Hydrogen-producing acetogens that utilize propionate and butyrate as substrates suffer serious inhibition from ammonia nitrogen. The toxicity of ammonia nitrogen to anaerobic granular sludge enhances when pH value and temperature increase. Anaerobic granular sludge can bear higher concentrations of ammonia nitrogen after being acclimated by ammonia nitrogen for 7 d.
基金supported by Grant-in-Aids for Scientific Research(B)(JP18H01564)from the Japan Society for the Promotion of Science.
文摘A microbial community structure of granules harvested from an anaerobic sludge blanket reactor treating phenolic wastewater was investigated using fluorescence in situ hybridization(FISH)and clone library construction.Clones of Syntrophorhabdaceae and Cryptanaerobacter were observed to be responsible for phenol degradation.For accurate taxonomic assignment of Cryptanaerobacter clones,phylogenetic analysis using nearly full-length 16S ribosomal RNA(rRNA)gene sequences was necessary.Three oligonucleotide probes were designed to detect the following three taxonomic groups:Syntrophorhabdaceae,Cryptanaerobacter,and Syntrophus.FISH analysis of thin sections of anaerobic granules showed a random distribution of bacteria and archaea.However,a well-defined distribution of Syntrophorhabdaceae,Cryptanaerobacter,and Syntrophus was observed.Cryptanaerobacter and Syntrophus were found on the outer layer of the granules and were closely associated with each other,while Syntrophorhabdaceae was located in the deeper part of the granules.Such specific distribution of the bacteria is most likely due to their metabolic association and affinity for the substrate.Phenol degradation in the granular sludge was observed to be carried out in the following way.First,Cryptanaerobacter converts phenol to benzoate,which is then degraded by Syntrophus into acetate.This syntrophic degradation of phenol occurs near the surface of the granule,where the phenol concen-tration is high.In the deeper part of the granule,where the phenol concentration is lower,Syntrophorhabdaceae degrades phenol into acetate.We observed that Syntrophorhabdaceae is less likely to produce benzoate as an intermediate to feed the neighboring organisms,which contradicts the theo-ries presented by previous studies.
基金Innovation Foundation of Donghua University for PhD Candidates,China(No.BC200828)Shanghai Leading Academic Discipline Project,China(No.B064)
文摘Anaerobic granular sludge is of key importance for highly effective operation of hybrid anaerobic baffled reactor(HABR).An observation and analysis on the composition of anaerobic granular sludge in each separation compartment of HABR was conducted by using scanning electron microscope(SEM)and molecular biotechnology,and specific methanogenic activity(SMA)and coenzyme F420 content were determined.It was indicated that the disparity of microbial composition was significant among these separation compartments of HABR,and the HABR encouraged phase separation.The results show the understanding of microbiological characteristics of anaerobic granular sludge in HABR is helpful for cultivating granular sludge,which ensures the effective operation of the reactor.
基金Supported by University Students' Innovation Project of Jiangsu Province,China (166201100022 )Scientific Research Foundation of Nanjing Institute of Technology (QKJC2010011)Science and Technology Support (Industrial) Project of Jiangsu Province,China(BE2010203)
文摘[Objective]We aimed to discuss the optimal conditions of sludge granulation on the basis of IC reactor.[Method]By using the formulated glucose wastewater,we studied the rapid cultivation of granular sludge as well as its influencing factors,so as to discuss the optimal conditions of sludge granulation.[Result]Through the static culture outside of IC reactor and dynamic culture in IC reactor,granular sludge appeared within a training cycle,with particle size of 1.0-1.5 mm.In IC reactor,when COD concentration of influent water was 5 000 mg /L,rising velocity was 0.9 m /h,pH was around 7,and auxiliary materials (like flocculant and active carbon) and mature granular sludge were added to the actor during the training process,the granulation process of sludge was accelerated.[Conclusion]The research could provide references for the rapid start-up of IC reactor.
基金Acknowledge: The study are supported by the Natural Science Foundation of Jiangsu Province (No. BK2005402) and National Natural Science Foundation (No. 30640018).
文摘Effect of ammonia at different concentrations on aerobic granular sludge and activated sludge was investigated in this study. Meanwhile, bacterial diversity variation and ammonia oxidizing bacterium (AOB) quantification within both kinds of sludge were monitored by terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT-PCR) technique, respectively. The results showed that the COD removal of both kinds of sludge changed slightly when the ammonia removal efficiency decreased gradually with the ammonia concentration increased from 100 mg L^-1 to 500 mg L^-1 Furthermore, activated sludge demonstrated higher ammonia removal ability than that of aerobic granular sludge (10%- 16%). As revealed by T-RFLP, activated sludge was of higher ammonia removal ability and more abounding bacterial diversity than that of aerobic granular sludge, suggesting that the bacterial diversity was probably relevant to the ammonia removal. The RT-PCR results indicated that the AOB population size of activated sludge and aerobic granular sludge were 2.80× 10^4-3.44× 10^4cells (g dried sludge)^-1 and 7.83×10^4-1.18×10^5cells (g dried sludge)^-1, respectively. There is no obvious positive correlation between the ammonia removal ability and number of AOB in both kinds of sludge.
文摘The textile processing plants utilize a wide variety of dyes and other chemicals such as acids, bases, salts, detergents, sizes, oxidants, mercerizing and finishing chemicals. Many of these are not retained in the final product and are discharged in the effluent. Therefore, the objective of this study was to assess the performance of EGSB (Expanded Granular Sludge Bed) reactor to treat non-acidifie wastewater. Several experiments using starch and volatile fatty acids as model substrates were conducted. The problems of piston formation were evaluated at a variety of relevant operational conditions, such as substrate concentration, organic and hydraulic loading rates. The results showed that newly grown acidogenic biomass diluted original methanogenic biomass and the granular sludge in the EGSB reactor deteriorated. The piston formation in the EGSB reactor that was fed with non-acidified wastewater occurred due to high growth of acidogenic biomass and high upflow velocity applied in the system.
文摘This article provides some ideas about several key parameters in design of multistage anaerobic granular sludge reactor (MA(iSR), and an MAGSR was designed by these ideas. By experiment this paper studies the productivity of biogas and circulation flux of wastewater. The results indicate that in certain scope the circulation flux increases in linear with the biogas productivity rise. The result by the experiment and by the hydraulics model about the circulation flux is different. The circulation flux can be several or more than ten times of the influence.
基金supported by the National Natural Science Foundation of China(No.51578069)Beijing Science and Technology Commission Project(No.Z171100000717012)。
文摘The screening and identification of attachment genes is important to exploring the formation mechanism of biofilms at the gene level.It is helpful to the development of key culture technologies for aerobic granular sludge(AGS).In this study,genome-wide sequencing and gene editing were employed for the first time to investigate the effects and functions of attachment genes in AGS.With the help of whole-genome analysis,ten attachment genes were screened from thirteen genes,and the efficiency of gene screening was greatly improved.Then,two attachment genes were selected as examples to further confirm the gene functions by constructing gene-knockout recombinant mutants of Stenotrophomonas maltophilia;when the two attachment genes were knocked out,the attachment potential was reduced by 50.67%and 43.93%,respectively.The results provide a new theoretical principle and efficient method for the development of AGS from the perspective of attachment genes.
基金financially supported by the National Natural Science Foundation of China(No.51578240)the South-West Minzu University Research Startup Funds(China)(No.RQD2022034).
文摘Saline wastewater is regarded as a challenge for wastewater treatment plants because high-salinity conditions negatively affect on traditional biological technologies.Aerobic granular sludge(AGS)has gained attention as a promising technology for saline wastewater treatment because of its compact structure and the ability to withstand toxic loadings.Therefore,this study investigated the saltresistance performance,sludge properties and microbial community of AGS under low-salinity and high-salinity conditions,with the saline concentrations ranging from 0 to 50 g/L.The results showed that AGS could withstand long-term saline stresses,and the maximum salinity reached 50 g/L within 113 d.Under salinities of 10,30,and 50 g/L,the chemical oxygen demand(COD)removal efficiencies were 90.3%,88.0%and 78.0%,respectively.AGS also its maintained strength and aggregation at salinities of 10 and 30 g/L.Overproduction of extracellular polymeric substances(EPS)by non-halophilic bacteria that enhanced sludge aggregation.The compact structure that ensured the microorganisms bioactivity helped to remove organic matters under salinities of 10 and 30 g/L.At a salinity of 50 g/L,moderately halophilic bacteria,including Salinicola,Thioclava,Idiomarina and Albirhodobacter,prevailed in the reactor.The dominant microbial communities shifted to moderately halophilic bacteria,which could maintain aerobic granular stabilization and remove organic matters under 50 g/L salinity.These results in this study provide a further explanation for the long-term operation of AGS for treating saline wastewater at different salinities.It is hoped that this work could bring some clues for the mystery of salt-resistance mechanisms.
基金financial support from the National Natural Science Foundation of China(Grant No.52160003 and 52264039)the State Key Laboratory of Urban Water Resource and Environment at Harbin Institute of Technology(2020DX05)+2 种基金Natural Science Foundation of Gansu Province(Grant No.20JR5RA436)the National Key Research&Development Program of China(2022YFC3203101)Foster Foundation of International Research Base of Seismic Mitigation and Isolation of Gansu Province(No.GII2022-P02).
文摘Membrane capacitive deionization(MCDI)is a cost-effective desalination technique known for its low energy consumption.The performance of MCDI cells relies on the properties of electrode materials.Activated carbon is the most widely used electrode material.However,the capacitive carbon available on the market is often expensive.Here,we developed hierarchically porous biochar by combining carbonization and activation processes,using easily acquired aerobic granular sludge(AGS)from biological sewage treatment plants as a precursor.The biochar had a specific surface area of 1822.07 m^(2)g^(-1),with a micropore area ratio of 58.65%and a micropore volume of 0.576 cm3 g^(-1).The MCDI cell employing the biochar as electrodes demonstrated a specific adsorption capacity of 34.35 mg g^(-1),comparable to commercially available activated carbon electrodes.Our study presents a green and sustainable approach for preparing highly efficient,hierarchically porous biochar from AGS,offering great potential for enhanced performance in MCDI applications.